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Human activity analysis has attracted great interest from computer vision researchers due 

to its promising applications in many areas such as automated visual surveillance, 

computer-human interactions, and motion-based identification and diagnosis.  

      This dissertation presents work in two areas: general human activity recognition from 

video, and human activity analysis for the purpose of identifying pathological gait from 

both 3D captured data and from video. 

      Even though the research in human activity recognition has been going on for many 

years, still there are many issues that need more research. This includes the effective 

representation and modeling of human activities and the segmentation of sequences of 

continuous activities. In this thesis we present an algorithm that combines shape and 

motion features to represent human activities. In order to handle the activity recognition 

from any viewing angle we quantize the viewing direction and build a set of Hidden 

Markov Models (HMMs), where each model represents the activity from a given view. 

Finally, a voting based algorithm is used to segment and recognize a sequence of human 

activities from video. Our method of representing activities has good attributes and is 

suitable for both low resolution and high resolution video. The voting based algorithm 

performs the segmentation and recognition simultaneously.  Experiments on two sets of 

video clips of different activities show that our method is effective. 
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      Our work on identifying pathological gait is based on the assumption of gait 

symmetry. Previous work on gait analysis measures the symmetry of gait based on 

Ground Reaction Force data, stance time, swing time or step length. Since the trajectories 

of the body parts contain information about the whole body movement, we measure the 

symmetry of the gait based on the trajectories of the body parts. Two algorithms, which 

can work with different data sources, are presented. The first algorithm works on 3D 

motion-captured data and the second works on video data. Both algorithms use support 

vector machine (SVM) for classification. Each of the two methods has three steps:  the 

first step is data preparation, i.e., obtaining the trajectories of the body parts; the second 

step is gait representation based on a measure of gait symmetry; and the last step is SVM 

based classification. For 3D motion-captured data, a set of features based on Discrete 

Fourier Transform (DFT) is used to represent the gait. We demonstrate the accuracy of 

the classification by a set of experiments that shows that the method for 3D motion-

captured data is highly effective. For video data, a model based tracking algorithm for 

human body parts is developed for preparing the data. Then, a symmetry measure that 

works on the sequence of 2D data, i.e. sequence of video frames, is derived to represent 

the gait. We performed experiments on both 2D projected data and real video data to 

examine this algorithm. The experimental results on 2D projected data showed that the 

presented algorithm is promising for identifying pathological gait from video. The 

experimental results on the real video data are not good as the results on 2D projected 

data. We believe that better results could be obtained if the accuracy of the tracking 

algorithm is improved.  

 



www.manaraa.com

 iii

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

To my beloved mother, sister, and deceased father 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 iv

ACKNOWLEDGMENTS 
 

 
First, I would like to express my sincere gratitude to Professor Abdel-Mottaleb, who 

introduced me to the field of computer vision, and helped me to jump start my research 

career in this field. He encouraged me to pursue novel ideas and provided me with 

exceptional experience and knowledge. 

 

My thanks also go to the other members of the committee, Dr. Kamal Premaratne, Dr. 

Mei-Ling Shyu, Dr. Shihab Asfour and Dr. Ajay Divakaran, for their valuable comments 

and suggestions. In particular, I want to thank Dr. Shihab Asfour for his helpful supports 

in the last two year of my Ph.D study and thank Dr. Ajay for his valuable supports and 

encouragement in the past years. 

 

More than everyone, I indebted to my mother and older sister for their enthusiastic 

encouragement and unlimited supports during all stages of my life.  I would like to 

extend my thanks to the faculty and staff members of the Electrical and Computer 

Engineering Department at the University of Miami for their role in my education and 

various resources made available to me to do my research.  

 

In addition, I would like to thank my fellow lab members, especially Dr. Nasser Al-Ansari, 

Dr. Omaima Nomir, Mohammad Hossein Mahoor, Jindan Zhou, Steven Cadavic, Ali 

Taatian, Muhammad Rushdi, Zhouyi Xu and for their collaboration during the 

completion of this thesis. 



www.manaraa.com

 v

 Contents 

Contents .............................................................................................................................. v 

List of Figures .................................................................................................................... ix 

List of Tables .................................................................................................................... xii 

Chapter 1............................................................................................................................. 1 

Introduction......................................................................................................................... 1 

1.1 Potential applications ............................................................................................ 2 

1.1.1 Visual surveillance..................................................................................... 3 

1.1.2 Computer user interface............................................................................. 3 

1.1.3 Motion based identification and diagnosis ................................................ 4 

1.1.4 Other related areas ..................................................................................... 4 

1.2 Limitations and challenges of Human activity recognition .................................. 5 

1.2.1 Segmentation.............................................................................................. 5 

1.2.2 Handling occlusion .................................................................................... 6 

1.2.3 3-D modeling and tracking ........................................................................ 7 

1.2.4 Use of multiple cameras............................................................................. 7 

1.2.5 Action understanding ................................................................................. 8 

1.2.6 Performance evaluation ............................................................................. 9 

1.3 Human activity analysis........................................................................................ 9 

1.3.1 General human activity recognition......................................................... 10 

1.3.2 Pathological gait pattern identification .................................................... 11 

1.4 Contributions....................................................................................................... 13 



www.manaraa.com

 vi

1.5 Dissertation outline ............................................................................................. 15 

Chapter 2........................................................................................................................... 16 

Related work ..................................................................................................................... 16 

2.1 General human activity recognition.................................................................... 16 

2.1.1 Region of interest segmentation (ROI) .................................................... 16 

2.1.2 Activity representation and recognition................................................... 21 

2.1.3 Classification techniques ......................................................................... 27 

2.1.4 View-invariant activity recognition ......................................................... 29 

2.2 Approaches in diagnosis of pathological gait ..................................................... 30 

Chapter 3........................................................................................................................... 34 

Human activity recognition............................................................................................... 34 

3.1 Single Activity Recognition................................................................................ 35 

3.1.1 Region of interest (ROI) extraction ......................................................... 36 

3.1.2 Feature Extraction.................................................................................... 39 

3.1.3 Activity Modeling.................................................................................... 42 

3.2 Segmentation and Recognition of Complex Activity ......................................... 45 

3.3 Experimental Results .......................................................................................... 45 

3.4 Discussion ........................................................................................................... 51 

3.5 Conclusion and Future work............................................................................... 53 

Chapter 4........................................................................................................................... 56 

System framework for pathological gait pattern identification ........................................ 56 

4.1 Gait representation .............................................................................................. 56 

4.2 Support vector machines..................................................................................... 57 



www.manaraa.com

 vii

4.3 System framework .............................................................................................. 59 

Chapter 5........................................................................................................................... 60 

Pathological gait pattern identification using 3D data...................................................... 60 

5.1 Motion-capture Data ........................................................................................... 60 

5.1.1 Subjects .................................................................................................... 60 

5.1.2 Data collection setup................................................................................ 61 

5.1.3 Procedure ................................................................................................. 62 

5.2 Method ................................................................................................................ 62 

5.2.1 Feature extraction..................................................................................... 62 

5.2.2 SVM classifier used in experiments ........................................................ 69 

5.3 Experimental results............................................................................................ 70 

5.4 Discussion and Conclusions ............................................................................... 71 

Chapter 6........................................................................................................................... 74 

Pathological gait pattern identification from video data................................................... 74 

6.1 Symmetry measure in 2D projected plane .......................................................... 75 

6.1.1 Symmetry representation in 3D space ..................................................... 75 

6.1.2 The Camera Model .................................................................................. 76 

6.1.3 Relationship between the 2D projections of Symmetrical                                  
         3D trajectories.......................................................................................... 78 

 
6.1.4 Measuring Symmetry............................................................................... 79 

6.2 Trajectory registration......................................................................................... 82 

6.3 Tracing body parts from video............................................................................ 83 

6.3.1 Building the template............................................................................... 84 

6.3.2 Template matching................................................................................... 86 



www.manaraa.com

 viii

6.3.3 Locating body parts.................................................................................. 87 

6.3.4 Composing trajectories ............................................................................ 87 

6.4 Experiments and results ...................................................................................... 88 

6.4.1 Experiment on 2D projected data ............................................................ 88 

6.4.2 Experiments on real video data................................................................ 93 

6.5 Conclusions......................................................................................................... 95 

Chapter 7........................................................................................................................... 97 

Summary and contributions .............................................................................................. 97 

Appendix I ...................................................................................................................... 100 

Appendix II ..................................................................................................................... 102 

Computing minimum residual of a linear system........................................................... 102 

Appendix III.................................................................................................................... 104 

Matching using Shape Contexts [97].............................................................................. 104 

References....................................................................................................................... 108 

 

 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 ix

 List of Figures 

Figure 1.1 SVM based pathological gait classification framework............................ 13 
 
Figure 3.1 Block diagram of the system for single activity recognition..................... 36 
 
Figure 3.2 a frame example from a running sequence................................................ 38 
 
Figure 3.3 Examples of normalized shape images...................................................... 40 
 
Figure 3.4  32 out of the 90 eigen-shape images ........................................................ 42 
 
Figure 3.5 The eight views used for capturing training sequences............................. 43 
 
Figure 3.6 Block diagram of the system for complex activity recognition ................ 47 
 
Figure 3.7 Sliding windows through the sequence of frames..................................... 47 
 
Figure 3.8 An image sequence from the database used in [58] .................................. 54 
 
Figure 3.9 Voting results for the sequence shown in Figure 3.8 ................................ 54 
 
Figure 3.10 Walking and running from front and rear views ..................................... 55 
 
Figure 3.11 Results of testing the robustness of features using different frame 
rates ............................................................................................................................. 55 
 
Figure 4.1 3D trajectories of left toe and right toe...................................................... 57 
 
Figure 4.2 SVM based pathological gait classification framework............................ 59 
 
Figure 5.1 Camera positions within the reconstruction volume ................................. 61 
 
Figure 5.2 Marker set used in the current study.......................................................... 63 
 
Figure 5.3 Block diagram of the feature extraction processing .................................. 64 
 
Figure 5.4 Plots of x components of LTOE and RTOE of a normal person 
before (upper) and after (bottom) normalization. The red denotes the left foot 
and the green denotes the right foot. The blue denotes the x trajectory 
component of the CLAV marker on the jugular notch. The upper figure and 
the lower figure show the x trajectory components before and after 
normalization. ............................................................................................................. 66 



www.manaraa.com

 x

 
Figure 5.5 Plots of z components of a normal person before (upper) and after 
(bottom) normalization. The red denotes the left foot and the green denotes 
the right foot................................................................................................................ 66 
 
Figure 5.6 Plots of z components of LTOE and RTOE of a patient with left 
knee replacement before (upper) and after (bottom) normalization. The red 
denotes the left foot and the green denotes the right foot. .......................................... 67 

 
Figure 5.7 Distance between LTOE and RTOE in x direction. From this plot 
we can see that the period of walking is around 143 frames. ..................................... 69 
 
Figure 5. 9 Experimental results using data from all the markers .............................. 73 
 
Figure 5.10 Experimental results using data from markers of the lower body 
parts............................................................................................................................. 73 
 
Figure 6.1 A pair of 3D trajectories of markers placed on left toe and right toe........ 77 
 
Figure 6.2 The block diagram of our algorithm to obtain trajectories........................ 85 
 
Figure 6.3 Examples of templates............................................................................... 86 
 
Figure 6.4 Means and standard deviations of recognition rates for different 
image resolutions. The camera was placed at 500cm far from subject and 
200cm high. Only trajectories of hands, knees and feet were used. ........................... 90 
 
Figure 6.5 Means and standard deviations of recognition rates for different 
heights of the camera. Distance between the subject and the camera is set as 
500cm. Only trajectories of hands, knees and feet were used. ................................... 90 
 
Figure 6.6 Experimental results of using different data. The height of the 
camera is set as 200cm, the distance between the subject and the camera is set 
as 500cm ..................................................................................................................... 92 
 
Figure 6.7 Means and standard deviations of recognition rates for projected 
data with different noise. Only trajectories of hands, knees and feet are used. .......... 92 
 
Figure 6.8 Examples of tracking results ..................................................................... 94 
 
Figure 6.9 Experimental results for using hands, knee, feet data ............................... 95 
 
 
 
 
 



www.manaraa.com

 xi

Figure A.1 Shape contexts. (a,b) Sampled edge points of two shapes. (c) 
Diagram of log-polar histogram bins used in computing the shape contexts. 
We use 5 bins for log r and 12 bins forθ . (d-f) Example shape contexts for 

reference samples marked by in (a,b). Each shape context is a log-
polar histogram of the coordinates of the rest of the point set measured using 
the reference point as the origin. (Dark=large value.) Note the visual similarity 
of the shape contexts for and , which were computed for relatively similar 
points on the two shapes. By contrast, the shape context for  is quite 
different..................................................................................................................... 106 
 
Figure A.2 The bipartite graph used to match sample points of two bodies. 
The bipartite graph used to match sample points of two bodies. Only the edges 
from the first node are shown for clarity. Each node from B1 is connected to 
every node from B2. In addition, ε -cost outlier nodes are added to either side. 
These outlier nodes allow us to deal with missing sample points between 
figures (arising from occlusion and noise)................................................................ 107 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 xii

 List of Tables 

Table 3.1 Advantages  and disadvantages of motion and shape features ......................... 35 

Table 3.2 The number of states of HMMs selection......................................................... 44 

Table 3.3 Classification results, recognition rate and standard deviation, of 
using motion features, shape features, both motion and shape features ........................... 49 
 
Table 3.4 Confusion matrix of using both motion and shape features ............................. 49 

Table 3.5 Recognition results compared with the algorithm used in [58] ........................ 50 

Table 5.1 Parameters of three classifiers .......................................................................... 70 

Table 5.2 Experimental results obtained when using RBF kernel.................................... 72 

Table 6.1 Breakdown of error in pixels after 2D tracking................................................ 93 

 

  

  



www.manaraa.com

 1

Chapter 1  

 Introduction 

Automatic visual analysis of human motion from video has been one of the most active 

research areas in computer vision. It usually includes detecting people, tracking, and 

more generally analyzing and interpreting human behaviors from image sequences. 

Human motion analysis has attracted great interest from computer vision researchers due 

to its promising applications in many areas such as automated visual surveillance, 

computer-human interactions, athletic performance analysis, content-based image 

indexing and retrieval, virtual reality, etc.  

 

Human motion analysis has been investigated under several large research projects 

worldwide. For example, Video Surveillance and Monitoring (VSAM) [1], a multi-

institution project funded by Defense Advanced Research Projects Agency (DARPA), 

tried to develop an automatic video understanding technology that enables a single 

human operator to monitor activities over complex areas such as battlefields and civilian 

scenes.  

 
Context Aware Vision using Image-based Active Recognition (CAVIAR), funded by 

the EC's Information Society Technology, tries to develop the theory of context-aware 

visual recognition systems and build a vision system for two applications (city street 
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surveillance and customer behavior analysis). The techniques they are interested in 

include integrating features, representing and recognizing objects, contexts and 

situations, learning instances of the representations from visual evidence, etc. In the UK, 

researchers have also worked on tracking vehicles and people and recognizing their 

interactions [2]. In addition, companies such as IBM and Microsoft also invested in 

research on human motion analysis [3,4].  

 
In recent years, human motion analysis has been featured in a number of leading 

international journals such as CVIU (Computer Vision and Image Understanding), 

PAMI (IEEE Transactions on Pattern Recognition and Machine Intelligence), as well as 

prestigious international conferences and workshops such as ICCV (International 

Conference on Computer Vision), CVPR (IEEE International Conference on Computer 

Vision and Pattern Recognition), IWVS (IEEE International Workshop on Visual 

Surveillance), ICME (IEEE International Conference on Multimedia & Expo). 

 
All the above activities demonstrate a great and growing interest in human motion 

analysis from the pattern recognition and computer vision community.  

 

1.1 Potential applications 

Human motion analysis has a wide range of potential applications such as visual 

surveillance, computer user interface, motion based diagnosis, etc.  
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1.1.1 Visual surveillance  

Many security-sensitive areas, such as banks, department stores, parking lots, and borders, 

have strong need for automated surveillance systems [5, 6]. At present, surveillance 

cameras are already widely used in commercial establishments, while camera outputs are 

usually recorded in tapes or stored in some video archives. These video data are currently 

used only “after the fact” as a forensic tool. What is needed is a real-time analysis of 

surveillance data to alert security officers to a burglary in progress, or to a suspicious 

individual wandering around in the parking lot. Nowadays, the tracking and recognition 

techniques of gait [7-10] have been strongly motivated by access control applications. As 

well as the obvious security applications, smart surveillance has also been proposed to 

measure traffic flow, monitor pedestrian congestion in public spaces [11, 12], compile 

consumer demographics in shopping malls, etc.  

1.1.2 Computer user interface  

Another important application domain is advanced user interfaces in which human 

motion analysis is usually used to provide control and command. Generally speaking, 

communication among people is mainly realized by speech, so speech understanding has 

already been widely used in early human-machine interfaces. However, it is subject to the 

restrictions from environmental noise and distance. Vision is very useful to complement 

speech recognition and natural language understanding for more natural and intelligent 

communication between humans and machines. That is, some cues obtained from human 

behavior, such as gestures and body pose, provide useful and complementary information 

for a machine to understand human commands and needs [13, 14]. Hence, some abilities, 
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such as detecting human presence and interpreting human behavior, are needed by future 

machines. Other applications in the user interface domain include sign-language 

translation, gesture driven controls, and signaling in high-noise environments such as 

factories and airports [15].  

1.1.3 Motion based identification and diagnosis 

With the development of computer-aided diagnostics, human motion analysis has 

attracted much attention of researchers in the medical field. There is some gait analysis 

based research work aimed at providing medical diagnosis and treatment support, such as 

[15-18]. Human gait also have been used to identify the gender, or to identify older 

people who usually have more potential risk of falling. Traditionally, the source data used 

for motion analysis are captured by some special instruments, such as ground reaction 

force platform and sensors attached to the human body, etc. Recently, video data based 

motion analysis are also researched for these kinds of applications. Particularly useful 

techniques include segmenting human body parts in an image, tracking the movement of 

joints over an image sequence, and recovering the underlying 3-D body structure for 

analysis. 

1.1.4 Other related areas  

In addition, human motion analysis shows its importance in other related areas. For 

instance, typical applications in virtual reality include chat-rooms, games, virtual studios, 

etc. As far as computer games [19] are concerned, they have been very prevalent in 

entertainment. Sometimes, people are surprised at the realism of virtual humans and 
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simulated actions in computer games. In fact, this benefits greatly from computer 

graphics dealing with devising realistic models of human bodies and the synthesis of 

human movement based on knowledge of the acquisition of the human body model, the 

retrieval of body pose, human behavior analysis, etc.  

 
Besides, human motion analysis also benefits model-based image coding (e.g., only 

encoding the pose of a tracked face in images in more detail than the uninteresting 

background in a videophone setting) which will bring about very low bit-rate video 

compression for more effective image storage and transmission.  

 

1.2 Limitations and challenges of Human activity recognition 

Automating the process of activity recognition is very challenging. Although there has 

been some good work in the area of gesture recognition and sign language recognition, 

automatically recognizing human activities is more challenging than gesture and sign 

language recognition. In the case of gesture and sign languages, there is a rigid syntax 

and predefined structure. However, in case of human activities there are no predefined 

vocabularies and no well-defined structures. Following are some of the issues that still 

need further research.  

1.2.1 Segmentation  

Fast and accurate motion segmentation is a significant but difficult problem. The 

captured images in dynamic environments are often affected by many factors such as 

weather, lighting, clutter, shadow, occlusion, and even camera motion. Taking only 

shadow for an example, it may either be connected with the detected object or 
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disconnected from it. In the first case, the shadow distorts the object’s shape, making the 

use of subsequent shape recognition methods less reliable. In the second case, the shadow 

may be classified as a totally erroneous object in the natural scene.  

 

Nearly every system for human motion analysis starts with segmentation, so 

segmentation is of fundamental importance. Although current motion segmentation 

methods mainly focus on background subtraction, how to develop more reliable 

background models that are adaptive to the dynamic changes in complex environments is 

still a challenge.  

1.2.2 Handling occlusion  

At present, the majority of human motion analysis systems cannot effectively handle the 

problems of self-occlusion of the human body and mutual occlusions between objects, 

especially the detection and tracking of multiple people under congested conditions. 

Typically, during occlusions, only portions of each person are visible and often at very 

low resolution. This problem is generally intractable, and motion segmentation based on 

background subtraction may become unreliable. To reduce ambiguities due to occlusion, 

better models need be developed to cope with the correspondence problem between 

features and body parts. Interesting progress is being made using statistical methods [20], 

which essentially try to predict body pose, position, and so on, from available image 

information. Perhaps the most promising practical method for addressing occlusions is 

through the use of multiple cameras.  
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1.2.3 3-D modeling and tracking  

2-D approaches have shown some successes in visual analysis of human motion, 

especially for applications that do not require high resolution (e.g., pedestrian tracking in 

a traffic surveillance setting). The major drawback of 2-D approaches involves the 

constraints on the camera viewing angles. Compared with 2-D approaches, for high 

resolution applications, 3-D approaches are more effective for accurate estimation in 

physical space, handling occlusion, and the high-level judgment between various 

complex human movements such as wandering around, shaking hands and dancing [21-

23]. However, applying 3-D tracking requires more parameters and more computations 

during the matching process. In general, current research on 3-D tracking is still in its 

infancy. Also, vision-based 3-D tracking brings a number of challenges such as the 

acquisition of human models [24], handling occlusion, parameter based body modeling 

[25-27], etc. So 3-D modeling and tracking deserve more attention in future work.  

1.2.4 Use of multiple cameras  

It is obvious that future systems of human motion analysis will greatly benefit from the 

use of multiple cameras. The availability of information from multiple cameras can be 

extremely helpful because the use of multiple cameras not only expands the surveillance 

area, but also provides multiple viewpoints to solve occlusions effectively. Tracking with 

a single camera easily generates ambiguity due to occlusion or depth. However, this may 

be resolved by information from another view.  
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For multi-camera tracking systems, it is important to decide which camera or image to 

use at each time instant. That is, the coordination and information fusion between 

cameras are a significant problem.  

1.2.5 Action understanding  

Since the final objective of “looking at people” is to analyze and interpret human action 

and the interactions between people and other objects, better understanding of human 

behavior is the most interesting long-term open issue facing human motion analysis. For 

instance, the W
4 

system [28] can recognize some simple events between people and 

objects such as carrying an object, depositing an object, and exchanging bags. However, 

human motion understanding still stresses tracking and recognition of some standard 

posture, and simple action analysis, e.g., the definition and classification of a group of 

typical actions (running, standing, jumping, climbing, pointing, etc). Some recent 

progress has been made in building the statistical models of human behaviors by using 

machine learning, but action recognition is just in its infancy. Some restrictions are 

usually imposed to decrease ambiguity during matching of feature sequences. Therefore, 

the difficulties of behavior understanding still lie in feature selection and machine 

learning. Nowadays, the approaches of state space and template matching for action 

recognition often choose a trade-off between computational cost and recognition 

accuracy, so efforts should be made to improve performance of behavior recognition. 

Furthermore, we should develop algorithms to extend current simple action recognition to 

more complex activity recognition.  
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1.2.6 Performance evaluation  

Generally speaking, robustness, accuracy and speed are three major demands of practical 

human motion analysis systems [29]. For example, robustness is very important for 

surveillance applications that are required to work automatically and continuously. These 

systems should be insensitive to noise, lighting, weather, clothes, etc. It may be expected 

that the fewer assumptions a system imposes on its operational conditions, the better. The 

accuracy of a system is important for behavior recognition in surveillance or control 

situations. The processing speed of a system deserves more attention, especially for real 

time surveillance applications.  

 

It is important to test the robustness of any system on large amount of data, a number of 

different users, and in various environments. Furthermore, it is an interesting direction to 

find more effective ideas for real-time and accurate online processing. It seems to be 

helpful and necessary to incorporate various data types and processing methods to 

improve robustness of a human motion analysis system to all possible situations.  

 

1.3 Human activity analysis  

In our work, we will address the issues of recognizing complex activities that consist of 

sequences of simple sub-activities. We will also address the pathological gait pattern 

identification. 
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1.3.1 General human activity recognition 

Several human activity recognition methods have been proposed in the past few years. 

Most of them can be classified into two classes based on the features that they use for 

recognizing human activities from video: motion feature based methods and shape 

feature based methods. 

 

Both motion-based and shape-based features have their own limitations. Motion-based 

features can depict the approximate direction of the motion of the body, but most motion-

based features are not robust in capturing velocity. For example, motion-based features 

can easily discriminate walking and sitting down, but fail to discriminate between 

walking and slow running. On the other hand, shape-based features can capture some 

pose information of the body, but without motion information its capability of describing 

human activity is limited. Therefore, combining both features can improve the 

representation and the robustness of activity recognition.  

 

Most of the work in activity recognition is view dependent and deals with recognition 

from one fixed view. The task of recognizing human activities from different views 

remains unsolved. Although some algorithms recognize human activities from different 

views, e.g., [30] [31], these methods either need to track different body parts from high 

resolution video or build 3D human model. In this thesis, we combine motion-based 

features with shape-based features to model human activities. We represent each activity 

by a set of Hidden Markov Models, where each model represents the activity viewed 

from a specific direction (i.e., viewing angle) to realize the view-invariance. Also, we 
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present a voting based method to segment and recognize continuous complex human 

activities. 

1.3.2 Pathological gait pattern identification  

Pathological gait describes altered gait patterns that have been affected by deformity, 

muscle weakness, impaired motor control and pain. Analysis of pathological gait is very 

important for both the medical diagnosis and the treatment process. In order to perform a 

diagnostic function it is necessary to be able to distinguish pathological from normal 

patterns of movement. Some deviations from normal gait patterns are obvious and can be 

identified easily, but others have to be identified by trained doctors. Even in some cases, 

trained doctors have to identify those deviations with special instruments. An automatic 

system for identifying pathological gait can be very valuable for both clinical diagnosis 

and treatment. The system can be used to quantify the deviation of the gait from the 

normal gait and quantify the progress due to certain treatment.    

 

For pathological gait pattern identification, it is intuitive to assess a patient’s gait by 

measuring the symmetry of the gait. In normal individuals gait patterns with respect to 

time, distance and vertical force are fairly symmetrical and only deviate by a small 

percentage from perfect symmetry [32]. Most of the developed symmetry measures, such 

as those presented in [33-37], are based on stance time, swing time, step length and 

vertical ground reaction force. Also, most of the methods just focus on the information 

provided by the lower limb movement. The symmetry of the upper body movement is 

rarely examined. The upper body movement may be informative since it also provides 
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information of body movement which is affected by patient’s disease. Therefore, a new 

gait symmetry measure based on the movement of the whole body may provide better 

assessment of the gait normality. 

 

We present two algorithms for identifying pathological gait. The first algorithm uses 3D 

motion data. In this algorithm, a method based on Discrete Fourier Transform (DFT) is 

presented to measure the symmetry of two 3D trajectories. Using this method a feature 

vector that captures the symmetry of the whole body’s movement is obtained. Support 

vector machines were used for classification and the results show that the algorithm is 

effective. 

 

The 3D motion-capture systems and devices that are used to capture the gait data for 

patients are expensive. Moreover, it usually takes much time and work to capture data 

(the patients are asked to take off their outerwear. Sensors and devices have to be 

carefully attached on patients’ bodies). Since common video cameras are inexpensive, it 

is advantageous to use data captured by these cameras to achieve the same goal. In this 

thesis, we also present a method to identify pathological gait from video data captured 

from a profile view. The experimental results are encouraging.  

 
Both algorithms use a support vector machine (SVM) based classification framework as 

shown in figure1.1. 
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Figure 1.1 SVM based pathological gait classification framework 
 

1.4 Contributions 

The major contributions of this dissertation are as follows: 
 

 Presenting a shape representation method based on PCA. Even though we use it to 

represent the silhouette of a person in our work, it could be used to describe the 

shape of any object in other applications. 

 

 Developing a method that uses both shape and motion information for representing 

human activities. As shown later in the thesis both shape features and motion 

features have their own advantages and disadvantage and when used together they 

complement to each other. Besides, this representation is general and can be 

extracted from any view and is suitable for both high resolution and low resolution 

video. 

 

Preparing Data 
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measure of gait 
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 Developing a view independent and HMM model based method for activity 

recognition.  

   

 Developing a voting scheme that works with the HMMs for segmenting and 

recognizing sequences of activities. In the training stage, the algorithm is only 

trained on single activity samples. In the recognition stage, the algorithm 

simultaneously segments and recognizes the activities. 

 

  Presenting a gait symmetry measurement and SVM based framework for 

identifying pathological gait.  

 

 Developing an algorithm for identifying pathological gait using 3D motion 

captured data. In this dissertation, we develop a DFT based gait symmetry measure 

using 3D trajectories of the human body parts and use it to represent the human 

gait for pathological gait identification.  

 

 Presenting a 2D template-based method for tracking body parts from profile view 

video.  

 

 Developing an algorithm for identifying pathological gait from video. Measuring 

the symmetry of two 3D trajectories based on their 2D projections is not easy. In 

this dissertation, we develop a symmetry measure of two 3D trajectories based on 

their projections on a 2D plane and use it for pathological gait identification.  
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1.5 Dissertation outline 

In chapter 2, we review the related research work for motion segmentation, behavior 

understanding, and action recognition and classification. Chapter 3 describes our 

algorithm for general human activity recognition from video. Chapter 4 presents the 

system framework for pathological gait identification. Chapter 5 details an algorithm for 

pathological gait pattern identification using 3D motion captured data. In chapter 6, we 

present another algorithm for identifying pathological gait from a video sequence. In 

chapter 7, we summarize the thesis.  
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 Chapter 2  

 Related work 

In this chapter we present an overview of the previous related works. We start by 

reviewing the literature for general human activity recognition. In this part, we review the 

works related to region of interest (ROI) segmentation which usually is the first step of 

human activity analysis system, the works for representing and recognizing human 

activity and some general classification techniques.  Then, we review related approaches 

based on gait classification for diagnostic purposes, which includes works presented in 

both the computer vision field and biomedical field.  

 

2.1 General human activity recognition  

2.1.1 Region of interest segmentation (ROI) 

ROI Segmentation in video aims at detecting regions that correspond to moving objects 

such as vehicles and people in a sequence of frames. Nearly every system of vision-based 

human motion analysis starts with ROI Segmentation. It is an important and difficult 

issue in a human motion analysis system. Detecting the ROI provides a focus of attention 

for later processes. Usually, only those changing pixels need to be considered. However, 

reliable and fast segmentation is difficult because of the diverse environment changes, 
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such as illumination and shadow. Currently, most segmentation methods use either 

temporal or spatial information of the images. Several approaches are discussed in the 

following.  

 

• Temporal difference 

Temporal difference based approaches use pixel-wise difference between two or three 

consecutive frames in an image sequence to extract moving regions, such as the 

algorithms presented in [1, 39]. In [39], A.J. Lipton et al. detected moving targets in 

video streams using temporal difference. After the absolute difference between the 

current and the previous frame was obtained, a threshold function was used to determine 

change. Using connected component analysis, the extracted moving regions were 

clustered into moving regions. These regions were classified into predefined categories 

according to image-based properties for later tracking. In [1], R.T. Collins et al. improved 

the algorithm by developing a hybrid algorithm for ROI segmentation by combining an 

adaptive background subtraction algorithm with a three-frame differencing technique. 

This hybrid algorithm is very fast and surprisingly effective for detecting moving objects 

in image sequences. 

 

Temporal difference usually does a poor job of extracting the entire relevant feature 

pixels, e.g., possibly generating holes inside moving regions, even though it is adaptive to 

dynamic environments. 
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• Optical flow   

Optical flow is used to describe coherent motion of points or features between image 

frames. Optical flow based ROI segmentation uses characteristics of flow vectors of 

moving objects over time to detect moving regions in an image sequence, such as the 

algorithm presented in [18, 40, 41]. In [18], D. Meyer et al. used a monotony operation 

which computed the displacement vector field to initialize a contour-based tracking 

algorithm, called active rays. Then, articulated objects were extracted for gait analysis. In 

[41], H.A. Rowley et al. focused on the ROI segmentation of optical flow fields of 

articulated objects. They added kinematic motion constraints to each pixel, and to 

combine ROI segmentation with estimation using EM (Expectation Maximization) 

computation. Most optical flow computation methods are computationally complex and 

very sensitive to noise, and cannot be applied to video streams in real-time without 

specialized hardware. More detailed discussion of optical flow can be found in Barron’s 

work [40]. 

 

• Background subtraction 

Background subtraction [28, 42-47] is a particularly popular method for ROI 

segmentation, especially for scenes with a relatively static background. It calculates the 

difference between the current image and a reference background image pixel-by-pixel to 

detect moving regions in an image. However, it is sensitive to the dynamic changes of the 

scene due to lighting and extraneous events. There are numerous approaches for 

background subtraction that differ in the type of the background model and the procedure 

used to update the background model. The simplest background model is a temporally 
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averaged image that is a background approximation similar to the current static scene. 

Based on the observation that the median value was more robust than the mean value, in 

[44], Yang and Levine proposed an algorithm for constructing the background model by 

taking the median value of the pixel color over a series of images. The median value, as 

well as a threshold value, determined by using a histogram procedure based on the least 

median squares method, was used to create the difference image. This algorithm could 

handle some of the inconsistencies due to lighting changes, etc.  

 

There are different methods for building adaptive background models in order to reduce 

the influence of dynamic scene changes on ROI segmentation. For instance, Karmann 

and Brandt in [42] and Kilger in [43], respectively, proposed an adaptive background 

model based on Kalman filtering to adapt temporal changes of weather and lighting.  

Some statistical methods to detect changing regions from the background have been 

represented recently. Those statistical approaches use the characteristics of individual 

pixels or groups of pixels to construct background models.  Usually, the statistics of the 

background pixels can be updated dynamically during processing. Each pixel in the 

current image can be classified into foreground or background by comparing with the 

statistics of the current background model. This approach is becoming increasingly 

popular due to its robustness to noise, shadow and change of lighting conditions. In [46], 

C.R. Wren et al. presented an adaptive background mixture model for real-time tracking. 

In their work, they modeled each pixel as a mixture of Gaussians and used an online 

approximation to update it. The Gaussian distributions of the adaptive mixture models 

were built to evaluate if the pixels come from the background. Their algorithm resulted in 
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a reliable, real-time outdoor tracker that can deal with lighting changes and clutter. In 

[28], I. Haritaoglu et al. built a statistical model by representing each pixel with three 

values: its minimum and maximum intensity values, and the maximum intensity 

difference between consecutive frames observed during the training period. The model 

parameters were updated periodically. The quantities that are characterized statistically 

are typically colors or edges. For example, in [47], S.J. McKenna et al. used an adaptive 

background model that combines color and gradient information, where each pixel’s 

chromaticity was modeled by using the means and the variances, and its gradient in the x 

and y directions was modeled by gradient means and magnitude variances. Background 

subtraction was then performed to cope with shadows and unreliable color cues 

effectively.  

 

• Other methods 

In addition to the basic methods described above, there are some other approaches to ROI 

segmentation. In [48], N. Friedman et al. implemented a mixture of Gaussian 

classification model for each pixel. This model attempted to explicitly classify the pixel 

values into three separate predetermined distributions corresponding to background, 

foreground and shadow. It could also update the mixture component automatically for 

each class according to the likelihood of membership. Hence, slow-moving objects were 

well handled, and shadows were eliminated effectively. In [49], E. Stringa et al. also 

proposed a novel morphological algorithm for scene change detection. From a practical 

point of view, the statistical methods described in Section 2.1.2 are far better choices due 

to their adaptability in more unconstrained applications. 
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2.1.2 Activity representation and recognition  

After successfully segmenting the moving humans from the image sequence, the problem 

of understanding human behavior from image sequences includes activity representation 

and recognition. Recognizing human activity may be simply considered as a 

classification problem of time varying feature data, i.e., matching an unknown test 

sequence with a group of labeled reference sequences representing typical human 

activities. It is obvious that the basic problem of human activity recognition is how to 

effectively represent the activity, and how to learn the reference activity sequences from 

training data. These are hard problems that have received increasing attention from 

researchers. Most of the previous methods can be classified into the following three 

classes based on the features they use for recognition.  

 

• Motion feature based methods 

Motion-based features were used in [50-57][106-108]. In [50], Sun et al. compare the use 

of affine motion parameters and optic flow as features for building HMMs to recognize 

human activities. In [51], Masoud et al. use the result of an Infinite Impulse Response 

(IIR) filter to measure motion and construct a feature image in which recent motion is 

brighter than older motion. Then, they use PCA to obtain a set of representative features. 

A distance measure (Minimum Distance to Average) is defined and recognition is 

performed by calculating the distance to some reference representing the learned activity. 

In [52], Hamid et al. extract spatio-temporal features such as the relative distance 

between two hands and their velocities and use dynamic Bayesian networks to recognize 

human activities such as writing, drawing and erasing on a white board. In [53], Ben-Arie 
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et al. represent an activity by a set of velocity vectors of the major body parts (hands, legs, 

and torso), store the representation in a set of multi-dimensional hash tables, and use 

multidimensional indexing to recognize activities. In [54], they use the distribution of 

motion over the image space in the x and the y directions to recognize five actions (sit 

down, get up raising hand, nodding, and shaking hand).  In [55], the features consist of 

two-dimensional meshes. First, optical flow fields were computed between successive 

frames, and each flow frame was decomposed into a spatial grid in both horizontal and 

vertical directions. Then, motion amplitude of each cell was accumulated to form a high-

dimensional feature vector for recognition. In order to normalize the duration of motion, 

they assumed that human motion was periodic, so that the entire sequence could be 

divided into many circular processes of certain activity that were averaged into a 

sequence of temporal stages. Finally, they adopted the nearest neighbor algorithm for 

human action recognition. In [56], Yamato et al. made use of the mesh features of 2-D 

moving human blobs such as motion, color and texture, to identify human behavior. In 

the learning stage, HMMs were trained to generate symbolic patterns for each action 

class, and the optimization of the model parameters was achieved by the forward-

backward algorithm. In the recognition process, given an image sequence, the output 

result of forward calculation was used to guide action identification. Moreover, in [57], a 

comprehensive framework using the statistical decomposition of human body dynamics 

at different levels of abstractions was presented to recognize human motion. In the low-

level processing, the small blobs were estimated as Gaussian mixture models based on 

motion similarity, color similarity and spatial proximity from the previous frames. 

Meanwhile, the regions of various body parts were implicitly tracked over time. During 
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the intermediate-level processing, those regions with coherent motion were fitted into 

simple movements represented by dynamic systems. Finally, HMMs were used as a 

mixture of these intermediate-level simple movements to represent complex motion. 

Given the input image sequence, recognition was accomplished by maximizing the 

posterior probability of the HMM. In [106], the authors proposed a large number of 

features based on velocity of subject and optical flow in the region of interest. Then, they 

resorted to several methods to evaluate different combinations of features based on the 

recognition rate achieved with the classifier. Finally, they use hierarchical Bayesian 

classifiers for recognition. In [107], a Burt-Adelson Pyramid approach was used to 

extract multi-resolution optical flow as features. Then, the author used HMMs to model 

and recognize human activities. In [108], an epitomic representation was presented for 

modeling human activities in video sequences. At first, a video sequence is divided into 

segments. Each segment is modeled using a linear dynamical systems based on positions 

and velocities of subject. Therefore, in their method, an activity is modeled as a sequence 

of linear dynamical systems. Then, a geodesic distance between two sequences of linear 

dynamical systems is defined to recognize the human activities. 

 

• Shape feature based methods 

Shape-based features are used in [59-61][109-114], where the body’s 2D or 3D shape 

features are used to recognize activities. In [58], they use the angles subtended by three 

body components with the vertical axis as a feature vector and use the nearest neighbor 

classifier to recognize seven actions (walking, sitting, standing up, bending, getting up, 

etc) from profile views. In [59], an appearance-based, view-independent, 3D shape 
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description is presented for classifying and identifying human posture using a support 

vector machine. The proposed global shape description is invariant to rotation, scale and 

translation and varies continuously with 3D shape variations. This shape representation is 

used for training support vector machines allowing the characterization of human body 

postures from the computed visual hull. The main advantage of the shape description is 

its ability to capture human shape variations allowing for the identification of body 

postures across multiple people, but this method needs data from multi-cameras. In [60], 

shape is represented by edge data obtained from canny edge detector, and key-frames are 

defined for each activity. Then, a shape matching algorithm is used to localize key frames 

of new video sequences and recognize forehand and backhand strokes in tennis video 

clips. [61] presents a new approach to automatically recognize human activities from 

video sequences acquired with a large scale view in order to monitor a wide area with a 

single camera. The recognition process is performed in two steps: at first the human body 

posture is estimated frame by frame and then the temporal sequences of the detected 

postures are statistically modeled. Body postures are estimated starting from the binary 

shapes associated to humans, selecting as features the horizontal and vertical projection 

histograms and using them as input to an unsupervised clustering algorithm. The 

Manhattan distance is used for building the clusters and for run-time classification. 

Statistical modeling of the detected postures is performed by Discrete Hidden Markov 

Models. In [109], the authors used a 50-dimensional histograms of combined shape 

context and edge features extracted at a variety of scales on the silhouette as feature. 

Then, they used discriminative Conditional Random Field (CRF) and Maximum Entropy 

Markov Models (MEMM) to model human activity. By comparing the results of the 
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method based on CRF and MEMM with the results of the method based on HMM, they 

declared that CRFs and MEMMs outperform HMMs. In [110], body parts were extracted 

from pixel-level images and used to estimated pose and gestures of subjects. Then, a 

context-free grammar (CFG) based representation scheme was used to represent and 

recognize actions and interactions. In [111], the authors presented feature based on an 

extended radon transform of binary human silhouettes. Then, a set of HMMs based on the 

extracted features are trained to recognize activities. They declared that the new feature is 

robust to frame loss in video, disjoint silhouettes and holes in the shape, and thus 

achieves better performance in recognition. In [112], the authors represent the silhouette 

images of a person undergoing an activity as a manifold in the image space. Then they 

distinguished between human activities by comparing learned manifolds. Different 

extrapolation techniques, which are used to find the positions of novel samples on a 

previously learned manifold, were tested in the experiments. Those extrapolation 

techniques include neural networks, generalized radial basis functions and Nystrom 

estimator. They concluded that the Nystrom estimator is the best extrapolation technique 

human activity recognition using silhouettes. In [113], the authors used kernel principal 

component analysis (KPCA) to reduce the silhouette images and used the obtained results 

as features. Then, they used factorial conditional random field (FCRF) to model and  

recognize human activities. They concluded that the FCRF is superior to both HMM and 

general CRF. In [114], the authors presented a framework for view-independent human 

activity recognition. They used three dimensional occupancy grids, built from multiple 

viewpoints, in an exemplar-based HMM to model activity in training stage.  
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In the recognition stage, 3D models are projected to 2D images that are compared to the 

silhouettes extracted from the probe video.   

 

• Other feature based methods 

Bobick and Davis [62] present a view-based approach for the representation and 

recognition of action using temporal templates. They made use of the binary MEI 

(Motion Energy Image) and MHI (Motion History Image) to interpret human movement 

in an image sequence. First, a set of images in a sequence was extracted by differencing, 

and the set of images was accumulated in time to from MEI. Then, the MEI was 

enhanced into MHI，which is a scalar-valued image. Taken together, the MEI and MHI 

could be considered as a two-component version of a temporal template, a vector-valued 

image in which each component of each pixel is some function of the motion at that pixel 

position. Finally, these view-specific templates were matched against the stored models 

of views of known actions during the recognition process. Based on PCA, Chomat and 

Crowley [63] generated motion templates by using a set of temporal-spatial filters 

computed by PCA. A Bayes classifier was used to perform action selection. In [115] K. 

Tsuda et al., at first, built a middle level wordbook of prototypes using k-means 

clustering based on low level spatio-temporal features. Then, a sequential representation 

of human acitivities based on middle level words is obtained. Further, LPBoost classifier 

is used for recognition. 

 

Recently, there are several new methods for human activity recognition. In these methods, 

representation of activities are not only based on the features obtained from the subject, 
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but also other information such as the objects involved in the activity or the environments, 

e.g., [116,117]. In [116], the authors presented an approach to recognize activities by 

identifying the objects used in the scene. They used dynamic Bayesian network models 

which combine radio frequency identification (RFID) and video data to recognize object 

labels and activity. The method can be useful in some particular scenarios such as 

cooking, which involve a relatively small number of repeated actions but many different 

objects. In [117], the authors tried to recognize human activities from static images. In 

this work, they modeled the activity by a generative graphical model base on the 

“environment” and “critical objects” involved in the activities. For an unknown image, 

they used the trained graphical model to recognize the scene environment class and the 

object classes in order to recognize the activity. 

2.1.3 Classification techniques 

Action recognition could be considered a matching problem of time-varying data. The 

general analytical methods for matching time-varying data are Dynamic time warping, 

Hidden Markov models and Neural network. 

 

• Dynamic time warping  

Dynamic time warping (DTW) [64] is a template-based dynamic programming matching 

technique which is already widely used in speech recognition. It has many advantages, 

such as conceptual simplicity and robust performance. Because of that, it was used in 

matching human movement patterns [65,66]. In DTW technique, even if the time scale 

between a test pattern and a reference pattern is inconsistent, it can still successfully 
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establish matching as long as time ordering constraints are satisfied. However, it is 

usually more susceptible to noise and the variations of the time interval of the movements. 

 

• Hidden Markov models  

Hidden Markov Models (HMMs) [67] is a more sophisticated technique for analyzing 

time-varying data with spatio-temporal variability. Its model structure can be summarized 

as a hidden Markov chain and a finite set of output probability distributions. The use of 

HMMs includes two stages: training and classification. In the training stage, the number 

of states of an HMM must be specified, and the corresponding state transformation and 

output probabilities are optimized in order for the generated symbols to correspond to the 

observed image features. In the matching stage, the probability that a particular HMM 

possibly generates the test symbol sequence corresponding to the observed image 

features is computed. HMMs are superior to DTW in processing unsegmented successive 

data, and are therefore extensively being applied to the matching of human activity 

patterns [68,69,70]. Although the HMM approach may overcome the disadvantages of 

the template matching approach, it usually involves complex iterative computation. 

Meanwhile, how to select the proper number of states and the dimensionality of the 

feature vector remains difficult. 

 

• Neural network  

Neural network (NN) [71,72] is also an interesting approach for analyzing time-varying 

data. As larger data sets become available, more emphasis is being placed on neural 

networks for representing temporal information. For example, in [71], Guo et al. used it 
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to understand human activity pattern, and in [72] Rosenblum et al. recognized human 

emotion from motion using radial basis function network architecture.  

 

• Other methods  

In addition to the three approaches described above, the PCA (Principle Component 

Analysis) method [73] and some variants from HMMs and NNs such as CHMM 

(Coupled Hidden Markov Models) [73], VLMM (Variable-Length Markov Model) [74] 

and TDNN (Time-Delay Neural Network) [75], have also appeared in the literature.  

2.1.4 View-invariant activity recognition 

Most of the work on activity recognition is view dependent and deals with recognition 

from one fixed view. The task of recognizing human activities from different views is 

still unsolved. In [30], Rao et al. developed a view-invariant representation of action 

consisting of a sequence of dynamic instants and intervals, which is computed by using 

spatiotemporal curvature of hand trajectory. Dynamic instants represent changes in 

motion, such as change of speed, direction, acceleration, and curvature. Intervals 

represent the time-period between any two dynamic instants. In [76], Parmeswaran et al. 

represented each human action by a set of 3D curves which are quasi-invariant to the 

viewing direction. In [31], Ogale et al. presented an approach that uses training videos 

from multiple views to automatically create view-independent representations of actions 

within the framework of a probabilistic context-free grammar. This grammar is then used 

to parse a new single-viewpoint video sequence to deduce the sequence of actions in a 

view-invariant fashion. 
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In our work, we combine motion-based features with shape-based features to model 

human activities. We represent each activity by a set of Hidden Markov Models, where 

each model represents the activity viewed from a specific direction (i.e., viewing angle) 

to realize the view-invariance. We also present a voting based method to segment and 

recognize continuous complex human activities. 

 

2.2 Approaches in diagnosis of pathological gait 

Analysis of a person’s gait during physical activities has many applications in the 

biomedical fields. For example, gait analysis is very helpful in assessing the potential risk 

of falling, which is important because injuries induced by falls have a significant impact 

on the rates of mortality among elders [77]. Another example is that the analysis of a 

patient’s gait during the rehabilitation process can provide useful insights about the effect 

of joint replacement on a patient’s walking ability and it could be used to develop 

biofeedback to help in patients’ treatment.  

 

In the past few years, gait-based analysis and classification have received considerable 

attention in the biomedical field. For example, in [78], Holzreiter and Kohle used a neural 

network to assess gait patterns from ground reaction forces to identify ‘‘normal’’ and 

‘‘pathological’’ gait patterns. In [79], Begg, et al. extracted statistical features from 

minimum foot clearance data as a feature and used support vector machines to classify 

gait patterns of young and old people. They also claim this algorithm has potential for 

wider applications, such as identifying pathological gait. In [80], W. Wu et al. obtained 
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ground reaction force (GRF) from a force platform, and used an algorithm that combines 

an artificial neural network and a genetic algorithm to assess patients after ankle surgery. 

Actually, it is intuitive to assess patients’ gaits by measuring symmetries of their gaits, 

because in normal individuals, gait patterns with respect to time, distance and vertical 

force are fairly symmetrical and only deviate by a small percentage from perfect 

symmetry [32]. In [33], Brandstater et al. showed that for a group of persons with acute 

stroke, the symmetry of swing time was related to the stage of their motor recovery. In 

[35-37], authors used temporal-distance symmetry as an indicator of gait performance 

and a measure for evaluating intervention strategies. In [81], Morita et al. analyzed the 

relationship between symmetry of the impulse of ground reaction force (GRF) and gait 

speed in persons with stroke and concluded that the symmetry of GRF well reflects the 

degree of motor recovery in these patients. In [32], Kim et al. found that symmetry in 

temporal-distance measures (stance time, swing time, and step length) is accompanied by 

symmetry in GRF measures during gait. They quantified the relationship between the 

symmetry of these variables and gait speed in a group of individuals with chronic stroke. 

 Most of the developed symmetry measures are based on stance time, swing time, step 

length and vertical ground reaction force. Also, most of them just focused on the 

information provided by lower limb movement. The symmetry of the upper body 

movement is rarely examined in persons with stroke. The upper body movement may 

also be informative since it also provides information of body movement which is 

affected by patient’s disease. Therefore, a new gait symmetry measure based on the 

movement of the whole body may provide better assessment. 
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Another issue is the expense of motion-capture systems and devices used to capture data 

for patient gait assessment in previous works. Moreover, it usually takes a long time and 

tedious work to capture data (The patients are asked to take off their outerwear. Sensors 

and devices have to be carefully attached on patients’ bodies.). Since common video 

cameras are inexpensive, it is advantageous to use data captured by these cameras to 

achieve the same goal. 

 

Recently, in [92], C. M. Kawamura et al. compared 2D gait analysis and 3D gait analysis 

of patients with spastic diplegic cerebral palsy, and concluded that 2D visual observations 

are inadequate for the quantitative assessment of pathological gaits. Even though, the 

question of whether 2D visual information is suitable for the qualitative assessment of 

gait or not still deserves further research. 

 

In this work, we present two gait analysis algorithms, based on symmetry, for the purpose 

of identifying normal and pathological gait patterns. In the first algorithm, we present a 

discrete cosine transform method to measure the symmetry of two 3D trajectories. A 

feature vector based on measuring the symmetry of movement of the whole body is used 

to present gait. Then, a support vector machine is trained for gait classification. We 

demonstrate the accuracy of the classification by a set of experiments that shows that our 

method for gait classification based on gait symmetry is highly effective. We also show 

that the result of experiment using data from all the body is better than the result of 

experiment using data from the lower body.  
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The second algorithm is for the same purpose but using single video data.  A symmetry 

measure in 2D plane is presented to represent gait from video. The same SVM based 

classification method is used to identify pathological gait. Experiments are executed for 

both 2D projections of 3D data and video data.  
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 Chapter 3  

 Human activity recognition  

We describe in this chapter our algorithm for general human activity recognition on a 

coarse level. 

 

As mentioned in chapter 2, both motion-based and shape-based features have their own 

limitations in representing human activity. Motion-based features can depict the 

approximate moving direction of the body, but most motion-based features are not robust 

in capturing velocity. For example, motion-based features can easily discriminate 

between walking and sitting down, but fail to discriminate between walking and slow 

running. On the other hand, shape-based features can capture some pose information of 

the body, but without motion information its capability of describing human activity is 

limited. Since motion-based feature and shape-based features are complementary (shown 

in table 3.1), combining both features can enhance the robustness of activity recognition.  

In this chapter, we combine motion-based features with shape-based features to represent 

and model human activities. We represent each activity by a set of Hidden Markov 

Models, where each model represents the activity viewed from a specific direction (i.e., 

viewing angle) to realize the view-invariance. We tested our algorithm on two sets of 

video clips. The first set was used in [58] and the second set is a database of 173 video 

clips for four activities that we collected. The results show that the algorithm is robust 
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and capable of recognizing activities from random viewing directions. We also performed 

experiments to compare between the performance using either shape or motion features 

alone and using both features together. The experiments show that combining the two 

features results in better recognition performance. Also, the experiments on complex 

activity data show the efficiency of voting and HMM based segmenting and recognizing 

algorithm. 

 

In section 3.1, we describe our activity recognition algorithm. This includes the feature 

extraction and the activity modeling. In section 3.2, we present the experimental results. 

In section 3.3 we discuss the robustness and the computational efficiency of the algorithm. 

Finally, we conclude the chapter in section 3.4. 

Table 3.1 Advantages  and disadvantages of motion and shape features 
 

 Motion feature Shape feature 

Information All body Contour 

Results of Background subtraction Not sensitive Sensitive 

Variation of Velocity Sensitive Not sensitive 

Variation of person’s figure Little sensitive Sensitive 

Different video frame rate Sensitive Not sensitive 

 

3.1 Single Activity Recognition  

Our algorithm [101] consists of three steps: 1) region-of-interest extraction, 2) feature 

extraction, and 3) HMM-based activity recognition. The goal of the region-of-interest 
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extraction is to separate the region that contains the human body from the background. 

To perform this task, we used a background subtraction algorithm. The details of this 

algorithm are presented in section 3.1.1. Then, the motion and the shape features are 

extracted from the region-of-interest, as explained in sections 3.1.2. HMM models are 

used for recognizing the activities as explained in section 3.1.3.  

 

Figure 3.1 Block diagram of the system for single activity recognition 
 

3.1.1 Region of interest (ROI) extraction 

We assume that each video clip includes only one person performing a single activity. 

We used a simplification of the background subtraction algorithm presented in [82] to 

extract the ROI. In [82], each background pixel was represented by a mixture of 

Gaussians. The probability density is estimated by using information in the recent history 
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frames. To accelerate the processing, we simplified the algorithm by representing the 

color value of each background pixel using a single Gaussian distribution instead of a 

mixture of Gaussians. The probability density function that a background pixel will have 

color value tx  at time t is estimated as 
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Using this probability estimate, we compute the probability )( ,, jitxP  for pixel ),( jiI in 

frame t , i.e., the probability of belonging to the background. Then, we can use the 

following threshold to obtain the foreground: 
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where T  is an experimentally selected threshold. In our experiments, we ran this model 

on a training sequence that only contained the background and selected the threshold 

such that it achieves an average of 2% false positive rate.  

 

The mean, kjix ,, , and the standard deviation, kji ,,σ , of the thk  color channel for pixel 

),( jiI  can be estimated from the previous N frames (in our experiments, N  is set to 10). 

The background parameters need to be updated continuously to adapt to changes in the 

scene. The update is performed in a first-in first-out manner. That is, the oldest sample is 

discarded and a new sample is included in the estimation of each background pixel. Here, 

we chose the selective update method that updates the background probability 

distribution by pixels that have been classified as background. 

Figure 3.2.a shows a frame from a video clip that captures a running person and Figure 

3.2.b shows the result of background subtraction with the ROI region inside the rectangle. 

 

 

 

 

 

 

 
(a)                                         (b) 

 
Figure 3.2 a frame example from a running sequence   

(a) An original frame (b) The ROI obtained after background subtraction 
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3.1.2 Feature Extraction 

3.1.1.2 Motion Features 

In [50], the experimental results demonstrated that using optical flow for activity 

recognition results in better performance than using the affine motion parameters. In this 

chapter we use optical flow to describe the motion. After applying the background 

subtraction and noise removal, we obtain a rectangle region of interest (ROI); one 

example is shown in Figure 3.2. We compute the optical flow, ),( jio , for each pixel in 

the ROI, and normalize the optical flow values as follows: 

max/),(),( ojiojio =  (5) 

where  

},|),(|max{ |max ROIjijioo ∈=  (6) 

Because people usually perform the same activity with different speed every time, the 

motivation of normalization is to eliminate the effect of speed variation. 

 

Then, we partition the ROI into 64 blocks, B(k), of equal sizes, where k = 1, …, 64. The 

average optical flow vector for every block is then computed by: 
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where n is the number of pixels in a single block. 
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Then, we compose the vector TOOOO ],...,,[ 6421= for every frame to represent its motion 

feature vector, where each element contains two components along x and y.  

3.1.1.3 Shape Features  

After the ROI regions are obtained from the background subtraction, their sizes are 

normalized to 64 by 48 pixels. Figure.3.3 shows some examples of normalized ROI 

regions from three frame sequences showing three different activities. Each normalized 

ROI image is then represented as a vector by concatenating the rows in a raster scan 

fashion. Thus, all ROI images are mapped to a collection of points in a large dimensional 

feature space, i.e., 3072 dimensions. Because human shape images have some similarity, 

these points are not randomly distributed in that space. To efficiently use the shape 

information, we use principal component analysis (PCA) to reduce the 3072 dimensional 

feature space to a lower dimension space. The main goal is to find those vectors that can 

best represent the distribution of human shape images. 

        

(a) Shape images from sitting down sequence 

        

(b) Shape images from walking sequence 

        

(c) Shape images from running sequence 

Figure 3.3 Examples of normalized shape images 
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 Let NSSS ,...,, 21  be the human shape vectors from the training set of ROIs. An average 

human shape vector is computed as: 

∑= iavg S
N

S 1      (8) 

Then, the set of orthonormal eigenvectors, NiVi ...1, = , and their corresponding eigen 

values, ii Ni ...1, =λ , can be computed by using the covariance matrixC .  

∑
=

ΦΦ=
N

i

T
iiN

C
1

1     (9) 

where avgii SS −=Φ . The eigenvectors, NiVi ...1, = , are ranked according their 

associated eigenvalues, iλ s. We choose the top M eigenvectors as the bases of the 

reduced space. In our experiments, M was set to 90 so that 92.8% of the energy is 

preserved. Figure 3.4 shows the first 24 and the last eight eigen-shape images out of the 

90 obtained eigen-shape images. 

Given a shape vector, S , it is projected to the new feature space by 

)( avg
T

kk SSVf −= for Mk ,...,1=   (10) 

Here fk is the kth eigen-shape component which is the projection of S on vector Vk. 

Therefore, T
MfffF ],...,,[ 21= is the projection of S . 

 

The shape feature and motion feature are related for representing human activities. The 

relations include temporal and spatial relations. Intuitively, the temporal relation is more 
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important for representing human activity. In this work, we just consider the temporal 

relation. The motion and shape feature vectors are combined together in a single feature 

vector 

T
Myyyxxxi fffOOOOOOU ],...,,,,...,,,,...,,[ 2164216421=   (11) 

where ixO  is the x component of iO , and iyO  is the y component of iO , and fi’s are the 

eigen shape components, where M is set to 90. Every video clip was then represented 

as a sequence, ],...,{ 2,1 LUUUU = , where L is the number of frames in the sequence.   

 

   

   

   

   
 

Figure 3.4  32 out of the 90 eigen-shape images 
 

3.1.3 Activity Modeling 

Hidden Markov models were successfully used for speech recognition because of their 

capability of recognizing spoken words independent of their duration [83][84]. In gesture 

recognition and human activity recognition, we can face the same situation, where the 
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same gesture or activity can occur over different times. Some of the previous research on 

gesture and human activity recognition [57][85-88] used HMMs. In this chapter we use 

HMMs for activity modeling.  

 

For view independent recognition of activities, we build several models for each activity, 

where each model represents the activity from a different viewing direction, to capture 

the variations arising from the changes in the view. For a given activity, j, through 

training, we obtain a set of HMMs: 

{ }jNjjj AAAA ,...,, 21=       (12) 

Each model represents the activity from a different viewing angle. All the HMMs that we 

used have the same fully connected topology. The number of HMMs’ states was 

empirically determined by an experiment based on cross validation. In the experiment, 

we use both motion and shape features for training and testing the HMMs with states 

from 4 to 9. For each case, we use the leave-one-out method to train and test the HMMs. 

Table 3.2 shows the average recognition rate by the HMMs with different number of 

states. 

 

 

 

 

 

 

Figure 3.5 The eight views used for capturing training sequences 
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Table 3.2 The number of states of HMMs selection 
 

Number of States  Average Recognition 
Rate(%) 

4 75.7 
5 69.3 
6 86.1 
7 85.8 
8 79.7 
9 66.7 

 
Based on the results in this table, the HMMs with six states gave the best recognition 

results.  

 

In our HMMs, each observation was modeled as a mixture of Gaussians. Two mixtures 

per feature were used in the experiments. We used the maximum-likelihood approach to 

classify each activity: 

)|(maxarg
  

j
activityallA

AUPA
j∈

=                (13) 

)|( jAUP is the conditional probability for activity J, and is computed by 

NiAUPAUP jiij ,...,1    ),|(max)|( ==    (14) 

 where U  is a feature vector sequence of an unknown activity. In the training stage, we 

segmented the training video into short clips where each clip contained only a single 

activity. Then, those video sequences were classified manually into different activity 

classes and different views. Each HMM model was trained 10 times by using the 

Expectation Maximization (EM) algorithm, and the model that resulted in the highest 

likelihood for the training data was selected. This is because HMMs are known to 

produce models of varying quality, even when trained repeatedly with the same data [73]. 
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3.2 Segmentation and Recognition of Complex Activity 

In our algorithm [102], activity segmentation and recognition are combined in one 

process. During training, we train the HMMs for each single activity separately. Then, 

during recognition we slide a window of length N over the sequence of frame features 

and classify the activity represented by the sequence in the window (see Figure 3.7). For 

a video clip with M frames we obtain a set of results ri, i= 1, 2, …, M-N+1, where result 

ri is the activity assigned to window wi. The result is used as a vote assigned to each 

frame in this window. We shift the window frame by frame and repeat the classification 

process. This will result in obtaining N results, rj, for frame fi, where i-N+1 < j <i+1. 

These classification results are considered as votes and we classify the activity of a frame 

by the activity that has maximum votes.  

 

The result of the previous classification process produces a set of voting curves, a curve 

for each activity, for the sequence of frames. A low-pass filter is applied to smooth the 

voting curves in order to obtain the final segmentation and recognition results. Figure 3.8 

shows an example of a sequence of frames from a video that contains a sequence of 

activities. Figure 3.9 shows the voting results (after being filtered) for the sequence of 

Figure 3.8. In Figure 3.9, seven curves represent votes for seven activities obtained 

separately for each frame.  

3.3 Experimental Results 

We have performed two sets of experiments. The first experiment was performed on our 

own database of video clips that have frames of 352x240 pixel resolution and 30 frames 
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per second. The database contains 173 sequences of four activities (47 walking sequences, 

54 running sequences, 36 standing up sequences and 36 sitting down sequences) captured 

from different views. Out of the 173 sequences, 128 sequences (32 for each activity) were 

captured at the eight views shown in Figure 3.5. The remaining 45 sequences were 

captured from arbitrary viewing directions. The length of each video clip is between 25 to 

120 frames. To make the most use of the video clips in evaluating our approach, we used 

the leave-one-out cross validation method for training and testing. Therefore, each time 

96 out of the 128 video clips that were captured from the eight views were used for 

training. The other 32 clips, one for each activity from the different eight views, along 

with the 45 clips captured from arbitrary views (not including the 8 views used for 

training) were used for testing. The average of all the results was calculated to give an 

overall evaluation of our algorithm. 

 

For each activity, we trained eight HMMs, where each HMM corresponds to one of the 

eight views. Our selection of eight views for training was a tradeoff between the number 

of quantized views used for training and recognition accuracy. The greater the number of 

quantized views used for training, the higher the recognition rate is. To demonstrate this 

observation, we experimented with training using fewer views, i.e., four views and two 

views. The test results revealed degradation of the recognition accuracy with the decrease 

in the number of views used for training. For two views the average recognition accuracy 

was about 30% and for four views the average recognition accuracy was about 52%, 

while for eight views, as shown in Table 3.2, the average accuracy was about 88.6%. 
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Figure 3.6 Block diagram of the system for complex activity recognition 
 

 

Figure 3.7 Sliding windows through the sequence of frames 
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Table 3.3 shows the results of activity recognition from the video clips using only motion 

features, only shape features, and both features together. The table shows both the 

average recognition rate as well as the standard deviation. Table 3.4 shows the confusion 

matrix of using both motion and shape features. The results in the table show the average 

result of four experiments, each of them with a different leave-one-out training set and 

corresponding test set. As shown in table 3.3, the average classification accuracy is 

88.6% when using both motion and shape features, which is better than the 79.5% and the 

82.1% recognition rates obtained when using either motion or shape features separately. 

From the experiments, we can see that the recognition rates for walking and running are 

lower than that of sitting down and standing up. When we checked those misclassified 

video clips, we found that most of the misclassifications were for walking and running 

activities captured from front and rear view .This is expected due to the high degree of 

similarity between walking and running in these views. Figure 3.10 shows four sequences 

for walking and running from front and rear views. In the profile view, running and 

walking activities are easier to distinguish by both features. From table 3.3, it is obvious 

that combining both motion and shape features has contributed to better results. It is 

important to note that in our experiments, recognition was performed on video clips that 

were captured from arbitrary views and were not used for training.  
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Table 3.3 Classification results, recognition rate and standard deviation, of using motion features, 
shape features, both motion and shape features 

 
Recognition rate (standard deviation)  

Using motion 
features 
(%) 

Using shape 
features 
(%) 

Using both motion 
and shape features 
(%) 

Walking 73.9(6.1) 87.0(9.3) 83.7(5.4) 

Running 74.1(5.6) 71.7(7.9) 86.7(1.6) 

Sitting 
down 

93.7(7.9) 89.6(7.9) 97.9(4.1) 

Standing 
up 

89.6(7.9) 91.7(9.6) 93.8(7.9) 

Average 79.5(2.2) 82.1(1.2) 88.6(1.6) 

 

Table 3.4 Confusion matrix of using both motion and shape features 
 

Walkin
g 

Runnin
g 

Sitting 
down 

Standing 
up 

Walking 83.7 16.3   

Running 13.3 86.7   

Sitting 
down 

  97.9 2.1 

Standing 
up 

  6.2 93.8 

 

The second set of experiments was performed on the database used in [58], which 

includes seven activities (walking, sitting, standing up, bending, getting up, squatting, 

rising). The video clips in this database have a frame resolution of 352x240 pixels and 

frame rate of 12-15 frames per second. Each sequence ranges in size from 60 to 80 

frames. All the sequences were captured from the profile view and each sequence 
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includes more than one activity. Since the data was captured only from the profile view, 

we just built one HMM for each activity in this experiment. We used a set of single-

activity sequences for training the HMMs. Eleven continuous sequences containing 62 

single-activities were used for testing. The length of the sliding window was set to eight 

based on the results from one training sequence. Our algorithm detected 48 out of the 55 

breakpoints between the single activities. This means that the segmentation efficiency is 

87.2%. The recognition rate for each activity is listed in Table 3.5. 

 

Table 3.5 Recognition results compared with the algorithm used in [58] 
 

Activity  Recognition rate 
using our algorithm 

Recognition rate using 
algorithm presented in 
[58] 

Walking 100% 89.66 

sitting down 77.8% 76.92 

standing up 71.4% 75.00 

Bending 73.7% 71.42 

getting up 83.3% 73.68 

Squatting 77.8% 75.00 

rising  77.8% 71.42 

Average recog. 80.6% 76.92 
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3.4 Discussion  

For testing the robustness of our features for the different frame rates, we did an 

experiment for which the results are shown in the Figure 3.11. We trained the activity 

models using the original video clips with 30 frames per second and then tested walking 

and running video clips at subsampled frame rates from the original video clips with one 

frame for every 1, 2, 3, 4, and 5 frames, respectively. From the results, we can see that 

the recognition rates degrade with the decrease in the frame rates. The degradation with 

the decrease in the frame rates is slow when we use only the shape features, and is fast 

when we use the motion features. The degradation rate when using both features is 

between the two. This is expected because the optical flow, i.e., the motion feature we 

used, is sensitive to frame rate but shape features are not. From Figure 3.11, we also see 

the degradation of recognition rate for walking, with the decrease of the frame rate, is 

smaller than the degradation for running. We think that this is because the activity cycle 

of running is short, i.e., one cycle of running includes few frames; when the frame rate is 

decreased, those sampled frames lose a great deal of information. Using both motion and 

shape features is more robust for different frame rates than just using motion features. 

Even though the experimental results demonstrate that the difference between the frame 

rates of the training data and the test data should not be too large for a good recognition 

rate, a quantized justification for the acceptable difference deserves further exploration in 

the future. 

 

The computational cost of this algorithm is high. Because the training work is done 

offline, we disregard the computation efficiency of the training. In the recognition phase, 
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we need to compute N×8 likelihoods (N is the number of activities); this computation can 

be fast enough because of the Viterbi algorithm. The main computation burden comes 

from the feature extraction, which includes background subtraction, optical flow 

computation and shape features computation. In the background subtraction step, the 

background is updated each frame. So the computation depends on the size of the 

background. The smaller the size of the background, the fewer will be the required 

computations. The computation of optical flow and shape features also depends on the 

size of the background. In our experiments, we used Matlab for implementation. The 

code runs at 1-2 frames per second on a 2.4 GHz Pentium processor for 352x240 color 

images. If we use optimized C code, we expect it to run at 15 frames per second. 

 

The background subtraction algorithm we used is updated frame by frame and is robust to 

slow changes in lighting. When the environmental conditions do not change intensely, 

our algorithm is robust. The background subtraction results in our indoor data not being 

sensitive to the threshold. It does not affect the background subtraction results, i.e., it 

affects the shape feature to some extent, but it does not affect the motion feature much 

because it usually does not affect the ROI extraction much. So the final recognition 

results based on both motion and shape features are not so sensitive to the selection of the 

threshold. The results of our experiments for indoor scenes show its effectiveness. 

Because the algorithm we used lacks the ability to get rid of shadows, it is not suitable for 

outdoor scenes. There is already considerable work on background subtraction for 

outdoor scenes that has appeared in the past few years. In this chapter we did not focus 

our attention on background subtraction. 
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3.5 Conclusion and Future work  

In this chapter, we proposed an algorithm for activity modeling and recognition from 

video clips captured at arbitrary views. Both motion and shape features were used to 

represent human activities. Based on the combined motion and shape features, a set of 

HMMs was built for each activity to represent the activity from different views to enable 

recognizing activities from arbitrary views. In our experiments, we compared the use of 

only motion features, only shape features and both motion and shape features in building 

HMMs. The experimental results show 88.6% recognition rate when using both motion 

and shape features, which is higher than the rate obtained when using only shape features 

or motion features only. We also presented a voting-based method to segment complex 

activities. Experimental results show that the segmentation efficiency is 87.2%. The 

results show that our algorithm is effective. Our future work will focus on combining 

human tracking with activity recognition in order to recognize activities when multiple 

people are present. 
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Figure 3.8 An image sequence from the database used in [58] 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.9 Voting results for the sequence shown in Figure 3.8 
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(a)Running from rear view 

   
(b)Running from front view 

   
(c)Walking from rear view 

   
(d)Walking from front view 

Figure 3.10 Walking and running from front and rear views 
 

 

 

 

 

 

 

 

 

 

 

(a) Result for walking                           (b) Result for running 
Figure 3.11 Results of testing the robustness of features using different frame rates 
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 Chapter 4 

System framework for pathological gait 
pattern identification 

4.1 Gait representation  

 
       It is reasonable to assess a patient’s gait by measuring the symmetry of the gait, 

because in normal individuals the gait patterns with respect to time, distance, and vertical 

force are fairly symmetrical and only deviate by a small percentage from perfect 

symmetry [32]. Some methods based on measuring the symmetry of on stance time, 

swing time, step length, and vertical ground reaction force were developed, such as [33-

37]. Based on observation, we find that the symmetry of gait also is reflected in the 

trajectories of body parts. Figure 4.1(a)(b)  shows two pairs of example trajectories of 

toes, respectively, from a normal person and a patient with knee problem. The two 

trajectories (shown in figure 4.1 a) from the normal person are clearly similar, but the two 

trajectories (shown in figure 4.1 b) from the patient are quite different. Here, we describe 

the symmetry of gait as: that the trajectories of the left body parts are the translation of 

the trajectories of their corresponding right body parts with small rotation in 3D space. 

 In this work, we use symmetry measure based on trajectories of body parts as features to 

represent gait for classification. 
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(a) From a healthy subject 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) From a pathological subject 
 

Figure 4.1 3D trajectories of left toe and right toe 
 
 

4.2 Support vector machines  

The Support vector machine (SVM) is a powerful machine learning tool, especially for 

binary classification problems. It has been successfully used in many applications, such 

as facial expression classification [14] and text categorization [15]. The core idea of SVM 

is to find the hyper-plane which is used to separate the two classes in feature space by 

maximizing the margin between the two classes. Our problem of classifying gaits into 
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normal gaits and pathological gaits may be stated as follows:  we have a training data set 

with input features and classification output  

{ ),( 11 yx , ),( 22 yx ,…, ),( NN yx } 

Where N is the total number of samples in the training set , ix ’s represent the feature 

vectors, and iy ’s have one of two values, either -1 or 1, which denote normal gait and 

pathological gait, respectively. 

 

The SVM linearly separates the patterns by finding a hyper-plane in the feature space that 

has the largest margins from the closest feature vectors. The linearly separable case can 

be represented mathematically as 

0<+ bxwT  for 1−=iy    (8) 

0≥+ bxwT  for 1=iy   (9) 

where w is the adjustable weight vector and b is the hyper-plane bias. 

The equation of the boundary (the hyper-plane) is 

0=+ bxwT   (10) 

In SVM, the optimal values of w and b are defined when the distance to closest feature 

vectors are maximized. In most real life problems, the data are not linearly separable. 

This is overcome by mapping the data from the input feature space into another space via 

a nonlinear kernel function, where the data will be linearly separable in the new space. In 
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our experiments we used three kernels: linear kernel function, Radial Basic Function 

(RBF) kernel, and a 2nd degree polynomial kernel. 

 

4.3 System framework 

Figure 4.2 show the SVM based system framework used to identify pathological gait. 
 
 

 

  Figure 4.2 SVM based pathological gait classification framework 
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 Chapter 5 

Pathological gait pattern identification using 
3D data  
 

In this chapter, we describe a gait analysis system, based on symmetry, for the purpose of 

identifying normal and pathological gait patterns [104]. The main objective of the 

research is to develop a classification system that is capable of differentiating between 

gait patterns of individuals who have had total knee replacement surgery and normal 

healthy individuals. We represent gait by a feature vector that is obtained from 3D 

motion data which contain information of the whole body’s movement. Then, support 

vector machines are trained for classification. The results show that the algorithm is 

effective. The rest of the chapter is organized as follows: In Section 5.1, we describe the 

data and the setup that was used in our work. Our algorithm, including feature extraction 

and the support vector machine (SVM) classifier, is described in Section 5.2. In Section 

5.3, we present the experimental results. Finally, we conclude the chapter in Section 5.4. 

 

5.1 Motion-capture Data  

5.1.1 Subjects 

In this study, we collected data from thirteen subjects, seven patients and six normal. All 

the patients had their knee replaced by either a metallic or an allograft knee. The normal 
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subjects are healthy male students. All the subjects were informed of the procedures and 

signed an informed consent approved by the University of Miami Institutional Review 

Board. 

5.1.2 Data collection setup 

A motion-capturing system composed of eight M-Cam cameras (Vicon 512, Vicon 

Motion Systems, Lake Forest, CA)[99] that record the spatial positions of a set of 

markers were positioned on the body throughout the whole gait cycles. The cameras 

captured a volume large enough to contain two gait cycles of the subject during any trial. 

Dynamic calibration was performed using a set of 50mm diameter reference markers 

(‘wand’). Figure 5.1 shows the camera positions within the construction volume. 

 

Figure 5.1 Camera positions within the reconstruction volume 
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5.1.3 Procedure 

The data was collected in collaboration with the Medical School of the University of 

Miami. The subjects were acquainted with the testing procedures and were prepared for 

the data collection. This preparation included locating reflective markers on different 

body landmarks of the subjects according to the Modified Helen Hayes (MHH) model 

[89] (shown in figure 5.2). Although we did not use the information from the full set of 

body markers, there were thirty-nine 25mm in diameter reflective markers that were 

placed on the subject’s body to capture the motion parameters. The placement of those 

markers is shown in Figure 5.2, where most of the markers are placed on symmetrical 

positions of the body, such as RSHO and LSHO, and some markers are not, such as 

RTIB and LTIB. Because we were interested in assessing the walking gait based on 

motion symmetry, we used the data from symmetrical markers for our purpose. The 

markers we chose are RFHD, LFHD, RBHD, LBHD, RSHO, LSHO, RELB, LELB, 

RWRA, LWRA, RWRB, LWRB, RASI, LASI, RPSI, LPSI, RFIN, LFIN, RKNE, LKNE, 

RANK, LANK, RTOE, and LTOE. We also used the data from marker CLAV in our 

work. The reason is explained later in this chapter. 

 

5.2 Method 

5.2.1 Feature extraction 

The 3D motion-captured data consists of a set of 3D trajectories of markers placed on a 

subject’s body. These trajectories represent the 3D spatial positions of the corresponding 
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parts of the body across time. Therefore, the question becomes how to measure gait 

symmetry by comparing corresponding trajectory pairs, such as the trajectories of the 

markers labeled RTOE and LTOE. We represent the 3D trajectory T(x, y, z, n) as three 

trajectory components X(n), Y(n), Z(n), which are three orthogonal components of the 

trajectory T(x, y, z, n) in the x, y, and z directions, respectively. Here, x is the person’s 

walking direction, z is the vertical axis parallel to the person’s body, and y is the axis that 

is perpendicular to x and z. We measure the difference between a pair of 3D trajectories, 

e.g. TL (x, y, z) and TR (x, y, z), by measuring the difference between each of the three 

corresponding components, e.g., (XL (n), XR (n) ), ( YL (n), YR (n) ) and ( ZL (n) and ZR 

(n) ). 

 

 

 

 

 

 

 

 

 

Figure 5.2 Marker set used in the current study 
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5.2.1.1 Normalization  

The ranges for the coordinate values of the trajectory components are different. For 

example, the z components of the trajectories of the feet usually range from 20mm to 

140mm in our reference coordinate system, but the z components of the trajectories of the 

head usually range from 1500mm to 1800mm, depending on the person’s stature. To 

eliminate the effect of the difference in the range between different trajectory components 

on the gait symmetry assessment, we normalize those trajectory components before 

further processing.  

 

Figure 5.3 Block diagram of the feature extraction processing 
. 

The normalization process for the trajectory components in the x direction is different 

from the normalization of the trajectory components in both the y and z directions. Since 

people walk along the x direction, all trajectory components in the x direction 

continuously increase with time, i.e., the frame number n, which is not the case for the 

trajectories in the y and z directions. Therefore, all x components are not periodic as in 
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the example shown at the top of Figure 5.4. We transform the XL(n), XR(n), i.e., the x 

components, in order to  make it periodic as follows:  

⎪⎩
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⎨
⎧
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−=

)()()(~
)()()(~

0

0

nXnXnX

nXnXnX

RR

LL    (1) 

where X0(n) is the x trajectory component of CLAV, the marker on the jugular notch 

where the clavicles meet the sternum.  Then, we normalize )(~ nX  by 
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max
~X  and min

~X  are the minimal and maximal values of )}(~),(~{ nXnX RL . The same 

transformation and normalization steps are applied to the x components of all the 

trajectories. For the components in the y and the z directions, we normalize them directly 

by  
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where Ymin and Ymax are the minimal and maximal values of )}(),({ nYnY RL , and similarly 

for Z. Figure 5.5 shows one example of the normalization of the z components of LTOE 

and RTOE of a normal person. Figure 5.6 shows one example of the normalization of the 
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z components of LTOE and RTOE of a patient with left knee replacement. From the 

figures, we can see the asymmetry between the left and the right trajectories. 

 

 

 

 

 

 

 

 

Figure 5.4 Plots of x components of LTOE and RTOE of a normal person before(upper) and 
after(bottom) normalization. The red denotes the left foot and the green denotes the right foot. The 

blue denotes the x trajectory component of the CLAV marker on the jugular notch. The upper figure 
and the lower figure show the x trajectory components before and after normalization. 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.5 Plots of z components of a normal person before (upper) and after (bottom) normalization. 
The red denotes the left foot and the green denotes the right foot. 
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Figure 5.6 Plots of z components of LTOE and RTOE of a patient with left knee replacement before 
(upper) and after (bottom) normalization. The red denotes the left foot and the green denotes 

the right foot. 
 

5.2.1.2 Discrete Cosine transform  

There are some methods for measuring the difference between two one-dimensional 

trajectories, such as the method used in [13]. In this method, authors obtain a measure of 

difference between two trajectories through searching and finding the optimal spatial 

translation and temporal shift. The drawback of this algorithm is that the optimization 

process is computationally expensive. According to the nature of our data, most of the 

body trajectories are periodic because the movement of a person is periodic while 

walking. Therefore, we measure the difference between two one-dimensional trajectories 

by comparing the absolute values of their DFT coefficients without the need to consider 

the spatial shift between the two trajectories. 

 

Let f(k) represent a discrete time signal, and let F(n) represent its discrete cosine 

transform. The Discrete Fourier Transform is given by  
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where N is the period. Assume that Fl,i(m) and Fr,i(m), m =1,…,N are the discrete cosine 

transforms of a pair of trajectory components, where the component is denoted by i, in 

the same direction and come from a pair of markers set on two symmetrical positions of 

the body, l denotes the trajectory component of a left body part, r denotes the trajectory 

component of a right body part. The difference between the pair of trajectory components, 

denoted by i, can be represented as 

 

][ 21 M
iiii dddd ⋅⋅⋅=     (6) 

where M ≤  N and 

|)(||)(|1
,, mFmF

N
d iril

m
i −=     (7) 

Therefore, we form a vector D = (d1 ,d2 ,…,dL) to assess the symmetry of a person’s gait, 

where L is the number of trajectory component pairs and is equal to the number of marker 

pairs multiplied by three.  

5.2.1.3 Determining the period length for each trajectory 

In order to use the DFT, we need to specify the number of samples N that constitute a 

period. One way is to compute N for each trajectory component pair. But actually, the 

movements of all body parts have the same period and equal to the period of walking 

cycle. It is reasonable to use the period of one walking cycle as the period N for all 

trajectories. There are already some methods for computing the duration of a gait cycle 

from video data [17][18]. Here we present a simple and robust algorithm to detect the 

duration of the gait cycle. In the process of walking, when the two feet are on the ground, 
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the distance between them is the largest. Starting from this phase, the distance decreases 

from a maximum to zero and then increases from zero to a maximum in a half cycle. 

Figure 5.7 shows an example plot of the distance between two feet with respect to the 

video frame numbers. We compute this distance using the x components of the marker 

trajectories of the left foot and the right foot.  

 

 

 

 

 

 

 

Figure 5.7 Distance between LTOE and RTOE in x direction. From this plot we can see that the 
period of walking is around 143 frames. 

 

5.2.2 SVM classifier used in experiments 

LIBSVM library [96] was employed in the experiments. In our experiments we used 

three kernels: linear kernel function, Radial Basic Function (RBF) kernel, and a 2nd 

degree polynomial kernel. The Parameters for the three different classifiers are list in 

table 5.1. 

 

What needs to be mentioned is that before applying SVM, we linearly scaled each 

dimension of feature vector to the range [0, 1]. The main reason is to avoid attributes in 
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greater numeric ranges from dominating those in smaller numeric ranges. Of course, we 

have to use the same method to scale testing data before testing.  

 
Table 5.1 Parameters of three classifiers 

 
  

Degree 
 

Gamma 
 

Coefficient 
 

C 
 

epsilon 
 

SVM algorithm 
Linear 1 1 1 1 0.001 Nu-SVC 

RBF 1 2 1 1 0.001 Nu-SVC 

Polynomial 2 1 1 1 0.001 Nu-SVC 

 

5.3 Experimental results  

We applied our method of symmetry assessment using the SVM in order to classify 

normal gait and pathological gait. The experiments were performed on a database 

containing 72 walking sequences for 13 subjects. The database included sequences from 

six healthy people and seven patients who had knee replacement. We split all the data 

into two sets, one with 39 sequences for training and the other one with 33 sequences for 

testing.  

 

Because all the patients had problems with their knees, we thought to use only data from 

the lower body parts. Therefore, we compared the results of classifying the subjects into 

subjects with normal and pathological gaits using either all the data or just the data from 

the lower body parts. Therefore, we performed two sets of experiments. In the first set of 

experiments, we used data from all the markers for training and testing, and we compared 

the results from three implementations of support vector machines for classification, i.e., 
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using linear kernel function, using RBF kernel function, and using the second degree 

polynomial kernel. We also experimented with using a different number of the DFT 

coefficients, i.e., M described in section 3.1.2.  Usually, the walking period of a person is 

from 125 to 160 frames under our system's frame rate, i.e., N is from 125 to 160.  Most of 

the higher DFT coefficients of the trajectories are zero, so we just need to keep the first 

few coefficients. We found that in most cases, m
id =0, when m > 9. So we experimented 

with different M values from 1 to 9. The results for these tests are shown in figure 5.8.  

In the second set of experiments, we just used the data of the markers from the lower 

body parts: LTOE, RTOE, LHEE, RHEE, RANK, LANK, RKNE, LKNE, RASI, and 

LASI. We also used the three SVM classifiers with different kernels and experimented 

with different M values from 1 to 9. The results for these tests are shown in figure 5.9. 

 

5.4 Discussion and Conclusions  

From figure 5.8, we can see that the classification results of the three SVM classifiers, 

with different kernels, are close to each other. The results of using the RBF kernel and the 

2nd degree polynomial kernel are a somewhat better than the result from the linear kernel. 

A 93.9% classification rate was obtained when M > 4, which means that two out of 33 

testing sequences were misclassified. Table 2 shows the number of correct classifications 

for each class using a different number of the DFT coefficients for the SVM classifier 

with RBF kernel. It shows that when M > 4, the feature vector has a good discrimination 

power to classify normal gait and pathological gait. 
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Figure 5.9 shows the classification rate curves obtained when using only data from the 

markers on the lower body parts. We can see that the classification results are much 

worse than the results obtained when using the data from all the markers. In this set of 

experiments the classifiers with RBF kernel and 2nd degree polynomial kernel gave better 

results than the classifier with linear kernel. The experiment shows that we lose some 

important information when we use only data from the lower body parts. 

Table 5.2 Experimental results obtained when using RBF kernel 
 

Using all data Using leg data  
 
M 
 

Normal
(correct 
/total num)

Pathological 
(correct 

/total num) 

Normal 
(correct 

/total num) 

Pathological 
 (correct 

/total num) 
1 5/16 12/17 7/16 15/17 

2 9/16 15/17 5/16 16/17 

3 14/16 14/17 12/16 15/17 

4 15/16 15/16 8/16 15/17 

5 14/16 17/17 6/16 15/17 

6 15/16 16/17 11/16 15/17 

7 15/16 16/17 10/16 15/17 

8 15/16 16/17 12/16 16/17 

9 15/16 16/17 12/16 15/17 

 

From the experimental results, we see that assessing the gait symmetry based on feature 

vectors obtained from the 3D trajectories is accurate in differentiating normal gait from 

pathological gait. We also found that SVM classifiers with RBF kernel and 2nd degree 

polynomial kernel perform better than the SVM classifier with linear kernel.  
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Figure 5. 8 Experimental results using data from all the markers 
 

 

Figure 5.9 Experimental results using data from markers of the lower body parts 
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 Chapter 6  

Pathological gait pattern identification from 
video data  
 
 
In this chapter, we present an algorithm [105] that extends our work in the previous 

chapter for identifying pathological gait pattern from video. 

 

In chapter 5, we presented a DFT based symmetry measure method using 3D trajectories 

of body parts. But it is very difficult to extend the DFT based approach to work with 

video data. In order to assess symmetry from video data, there are two major issues that 

need to be dealt with. The first issue is extracting trajectories of the different body parts. 

Tracking is a particularly important issue in human motion analysis, where in our case it 

is important in order to extract features that can be used to assess symmetry. Even though 

object tracking in video streams has been a popular topic in the field of computer vision 

for many years and many methods have been presented [22-24][94-95], accurate tracking 

is still a challenging problem, especially for tracking human body parts such as hands, 

face, and feet. The second issue is incomplete data due to self-occlusion. It is difficult to 

obtain complete trajectories of hands or feet from video captured from a single profile 

view because of the self-occlusion that happens while the subject walks. This means that 

the DFT based feature presented in chapter 4 cannot be used to represent symmetry of 

gait. Therefore, a new method is needed to deal with the incomplete data.  
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A silhouette or contour is relatively easy to extract from the image. We propose a model 

based body part tracking algorithm to track the 2D contour. The geometric structure of 

the human body is represented as a 2-D contour. A set of contour models of the body 

during different phases of the gait of subjects was selected as models and stored in a 

database. The different body parts are manually labeled for all these models. Given a new 

contour of a subject that is extracted from a frame, a classification algorithm is used to 

find the most similar stored model in the database. Then, a matching algorithm is used to 

match the extracted contour and the most similar model to find the corresponding body 

parts. We use this method to find the body parts in each frame and obtain the trajectories 

of these body parts. 

 
Because of self-occlusion, we will not be able to obtain the complete trajectories of all 

body parts. One solution is to use methods such as interpolation or Kalman filter to 

estimate the lost trajectory segments. But this interpolated data is very inaccurate. Here, 

we developed another method to deal with the incomplete data. At first, we develop a 

mathematical representation of the symmetry assumption of gait in the 3D space. Then, 

under the projective camera model, we present a measure of symmetry in the 2D image 

plane. 

6.1 Symmetry measure in 2D projected plane  

6.1.1 Symmetry representation in 3D space 

According to the symmetry assumption that the movement of the left and the right parts 

of the body is symmetrical, we assume that the trajectories of the left body parts are the 
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same as the translation of the trajectories of their corresponding right body parts with a 

small rotation in the 3D space. 

Therefore, this symmetry relation can be represented as:   
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Where (sx,1(n), sy,1(n), sz,1(n)) and (sx,2(n), sy,2(n), sz,2(n)) , n = 1 … L, is a pair of 

trajectories that have already been registered. Registration means to establish the 

correspondence between the points of the two trajectories. L is the length of one 

trajectory. Subscripts 1 and 2 denote the trajectory corresponding to the left and the 

trajectory corresponding to the right side of the body, respectively. 

 

The above equation represents the relationship between two symmetrical trajectories in 

the 3D space. Since our goal is to measure the symmetry of gait using video data, we 

need to represent the relationship between two 3D symmetrical trajectories based on their 

projections in 2D. In the following sections, we will first introduce the camera model 

which is used for projection. Then, we will introduce the representation of the symmetric 

trajectories in 2D and present the corresponding measure of symmetry. 

6.1.2 The Camera Model  

Two camera models are commonly used to represent projection from 3D to 2D: affine 

model and projective model. The affine model requires that the distance between the 

camera and the object to be large compared to the size of the object.  In our case, this 
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means that the camera should be placed far from the walking person. This will induce 

relatively large errors when we extract the trajectories from video. Therefore, in this work 

we use a projective camera model. We set the camera reference frame to coincide with 

the world’s reference frame. The projection of a 3D point (sx,, sy, sz) can be described by  
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Where f is the focal length of the camera and px and py are the offsets of the image 

reference frame center.  

 

 

Figure 6.1 A pair of 3D trajectories of markers placed on left toe and right toe 
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6.1.3 Relationship between the 2D projections of Symmetrical 3D 
trajectories 
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sequences that represent the projections of a pair of 3D trajectories (sx,1(n), sy,1(n), sz,1(n)) 

and (sx,2(n), sy,2(n), sz,2(n)) , n = 1 … L. Using equations (1) and (2), the relationship 

between the 2D projections of two 3D symmetrical trajectories can be represented as:      
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The details of deriving Eq. 3 are presented in the Appendix I. 

When the camera is placed on the side of the walking person such that the person walks 

along a line parallel to the 2D image plane, the )(2, nsz does not change significantly and 

as a result the )(/ 2, nsf z  can be approximated by a constant. Therefore, we have 

))(( 2,
'' nsTT zuu ≈ , ))(( 2,

'' nsTT zvv ≈  and ))(( 2,
'' nsTT zww ≈  for n = 1 … L., Eq. (3) can be 

approximated as follows 
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Let fTnvnun w /))( )( ()( '
22 +−= βγη . For a pair of symmetrical 2D trajectories 1I  and 

2I , we would have the relationship: 
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6.1.4 Measuring Symmetry  

By arranging the 2L equations from Equation (5), the symmetry of two trajectories in the 

2D plane can be represented as: 

bAX =      (6) 

Where A is a )3(2 +× LL  dimensional matrix composed of the coordinates of points in 

both 1I  and 2I , b is a 12 ×L dimensional vector composed of coordinates of points in 2I  

and X is an unknown 1)3( ×+L  dimensional vector containing information about the 

translation and rotation between the two trajectories, the camera parameters and the 

distance between the object and the camera, i.e., 
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This is a linear system. When the two trajectories are symmetrical, given the computed A 

and b, there is one solution for X when L > 3. But because of numerical errors and noise 

there may be no exact solution especially in the case where the two trajectories are not 

symmetrical.  

 

Therefore, for two arbitrary trajectories 1I  and 2I , the question is how to evaluate the 

symmetry between 1I  and 2I based on the computed A and b. In this work, we use the 

minimum residual of the linear system, i.e., dist, to measure the symmetry of two 

trajectories,  

}1{min 
3LRX

bAX
L

dist −=
+∈

      (8) 
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The reason for this is explained as follows: 

At first, given A and b, the vector X  is estimated as 

}{minarg 
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I is a projected trajectory that is 

approximate to 1I  and the two trajectories 1I and 2I  are exactly symmetrical:  
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bXA LS =  

Where A  is a )3(2 +× LL  dimensional matrix composed of the coordinates of points in both 

1I  and 2I .  

Furthermore, from eq. (9), we have the relation between A and A : 
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Therefore, the symmetry measure, dist, between 1I  and 2I  can be represented as: 

∑
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σεη

     (10) 

From (10), we can see that the measure dist gives a weighted sum of errors by which the 

projected trajectory 1I , must be perturbed in order to make it symmetrical to the projected 

trajectory 2I . The measure dist can be readily solved by the method based on QR 

factorization of A [93]. The details of computing dist are presented in Appendix II. 

Therefore, from N pairs of projected body part trajectories, we can obtain a vector D = 

[dist1, dist2, …, distN]T as a feature vector to represent the gait. disti is the symmetry 

measure for  trajectory pair i, where the pair consists of two corresponding trajectories 

coming from the left and right sides of the human body. 

 

6.2 Trajectory registration 

In Section 6.1, we assumed that the two corresponding trajectories are already registered. 

Therefore, before composing matrix A and vector b, we need to register the two 

trajectories.   
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Assume the points on 2D trajectories are represented as   
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Because the trajectories of body are periodic during walking and the phase difference 

between corresponding trajectories of a left and a right parts of the body is half a period, 

we use the method described in Section 5.2.1.3 to obtain the length of the gait’s period, N. 

The point )(1 ns  corresponds to )2/(2 Nns + . To overcome the effect induced by the 

estimation error of N, we iteratively register a pair of trajectories, i, multiple times. Each 

registration is based on a different length of the gait’s period from N-m to N+m.  

Therefore, a set of the symmetry measures for the pair of trajectories i is computed for 

the 2m+1 registrations. The minimal symmetry measure  

disti  = min { disti 
N-m, disti 

N-m+1 , …, disti 
N+m}     (10) 

is chosen as the final symmetry measure for the pair of trajectories i. 
 

6.3 Tracing body parts from video 

To apply the algorithm to real video data, the first step is to extract the trajectories of the 

body parts, i.e., tracking body parts from video. 

 
Object tracking in video streams has been a popular topic in the field of computer vision 

for many years and many methods have been presented. For example, Guo et al. [94] 

represent the human body structure of the silhouette by a stick figure model which has 

ten sticks articulated with six joints. They transform the problem into finding a stick 
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figure with minimal energy in a potential field. A. O. Balan et al. [95] presented an 

algorithm based on an adaptive appearance model that includes an adaptive template, 

frame-to-frame matching and a post-process to get rid of outliers. An annealed particle 

filtering algorithm is employed to infer the position of the body parts. A 3-D body model 

is used to predict self-occlusion and improve pose estimation accuracy. When using data 

from four views, they obtained very good tracking results. But when the number of views 

decreases, the results are degraded. An important advantage of using a 3-D human model 

is the ability to handle occlusion and obtain more accurate data for action analysis. 

However, it is it is computationally expensive.  

 

In this chapter, we present a template-based algorithm to track human body parts in a 

video for our application. Figure 6.2 shows the steps of this algorithm. Initially, a set of 

templates are built to model static states of gait from profile view. Then, the extraction of 

the body parts’ trajectories from a video is achieved by three steps. In the first step, for 

each frame of the video, the region of interest (ROI), i.e., binary silhouette, is extracted 

and the template which is most similar to the extracted ROI is found through a matching 

algorithm. In the second step, the body parts’ positions are estimated by using an 

assignment algorithm for each frame. In the last step, the trajectories of body parts are 

obtained from the information extracted from the whole video. 

6.3.1 Building the template  

The cycle of a gait can be taken as a sequence of states where each state is modeled by 

one or more templates. Each template includes a normalized binary silhouette image of 
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size 192*144 and its contour image with manually labeled body parts that are denoted as 

“front hand,” “rear hand,” “front knee,” “rear knee,” “front foot” and “rear foot.” Figure 

6.3 shows two examples. Each body part is labeled by a set of contour points as what is 

shown in Figure 6.3 (b) and (d). The geometric center of each set of points is considered 

as the position of the body part represented by the set of points. What needs to be noticed 

is that for some templates, the hands, knees or feet are not labeled because in these 

templates some parts of the body do not clearly appear in the contour and therefore 

cannot be labeled accurately. For example, the template shown in Figure 6.3(b) only has 

one labeled knee. In our experiment, 37 templates were selected and labeled manually 

from the training data.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 

Figure 6.2 The block diagram of our algorithm to obtain trajectories 
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  (a)                           (b)                                      (c)                                (d) 

Figure 6.3 Examples of templates 
 

6.3.2 Template matching 

Given a frame of video, at first, the binary region of interest (ROI) image p and its 

contour image pe are extracted by using the background subtraction algorithm used in 

[101]. Then the template most similar to extracted ROI must be selected from the stored 

templates. Before matching, the extracted ROI image has to be normalized into the size 

of the stored templates. The normalization is straightforward: we enlarge/shrink the ROI 

image to the same height and width. The normalized ROI image is denoted as p . Then 

the template t which is most similar to p can be selected by 

sii
t

TttpSt
i

∈=    ),(maxarg  

Where  ),( itpS is the ratio of the intersection and the union of the two binary silhouettes 

and is used as a measure of the similarity between them,  

i

i
i tp

tp
tpS

∪
∩

=),( , 
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it  denotes the binary silhouette template and Ts is the set of normalized binary silhouette 

templates. The intersection and the union are calculated in terms of the number of pixels. 

The value of this ratio ranges within [0, 1], with 0 representing no overlap between the 

two silhouettes, and 1 implying an identical match. 

6.3.3 Locating body parts  

After obtaining the matched template t, we locate positions of the body parts in the 

extracted ROI image p by matching pe and te which are the contour images of p and t. The 

goal of matching is to find the “best” matching point on pe for each point on te. This can 

be formulated as a bipartite assignment problem.  We use an algorithm presented in [97-

98] to find the optimal matching between the two contours. More details are presented in 

Appendix III. Then we obtain the sets of points that correspond to the hands, the knees 

and the feet, respectively, on the contour pe. The centers of each set of points are 

computed as the positions of the hands, the knees and the feet in p. The corresponding 

positions in the original video frame are obtained accordingly. 

6.3.4 Composing trajectories  

Using the algorithm described in the two previous sections, we can obtain the positions of 

the hands, the knees and the feet in the frames of a video. Those positions are labeled as 

“front hand,” “rear hand,” “front knee,” “rear knee,” “front foot” and “rear foot.” The 

points labeled as “front hand” cannot be used to compose a hand’s trajectory, because the 

“front hand” may be the left hand in some frames and the right hand in other frames. We 

need to differentiate between the left and right hands, knees and feet. Walking is a 
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periodic behavior that can be divided into two half cycles. In the first half cycle, one hand 

is in front of the body and the other hand is behind the body. In the second half cycle, 

they are reversed. This means that the front hand in the first half cycle is the rear hand in 

the second half cycle. The boundary between the first half cycle and the second half cycle 

can be robustly detected by templates denoted as boundary templates. By detecting the 

boundary between the two half cycles of the gait, we can appropriately assign the 

positions of the “front hand” and the “rear hand” to the left or the right trajectories. Using 

the same method, we can obtain the trajectories for the knees and the feet. We need to 

mention that the obtained trajectories are discontinuous trajectories because the hands, 

knees and feet are not localized for some frames of video. This is not a problem for the 

algorithm presented because the symmetry measure presented in Section 6.1 can deal 

with incomplete trajectories.    

 

6.4 Experiments and results  

We employ two set of experiments. The first experiments are performed on 2D data 

projected from real 3D data. Then we apply the presented method to real video data. 

6.4.1 Experiment on 2D projected data 

This experiment is employed on 2D projected data. We prepared the data by projecting 

3D trajectories (3d motion-captured data) to 2D profile view using a projective camera 

model. The 2D projected data contains 72 walking sequences for 13 subjects, which 

includes six healthy subjects and seven patients with knee problems. For each walking 

sequence, there are eight pairs of trajectories of markers on the left side and the right side 
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of the body. They are located on the head, shoulders, elbows, hands, waists, knees, ankles 

and feet. We partitioned the data into six subsets. Each subset contained data from an 

approximately equal number of “healthy” and “pathological” subjects. A linear support 

vector machine was used for classification. The cross-validation method was used for 

training and testing. The virtual camera was placed to capture the profile view of a 

working person. To check the sensitivity of the proposed method to the resolution of the 

image, we projected data onto a 2D plane when a virtual camera is placed 500cm far 

from the subject and at a height of 200cm. We adjusted the length of quantization step to 

generate the images with different resolutions, such as 0.2cm/pix, 1cm/pix, 2cm/pix, 

3cm/pix, 4cm/pix, 5cm/pix, 6cm/pix, 7cm/pix, and 8cm/pix. Figure 6.4 shows the 

experimental results. From the figure, we can see that the algorithm obtains 84.5% 

recognition rate when image resolution is higher than 1cm/pix. The recognition rate 

decreases with the drop of image resolution.  

 

To check the sensitivity of the proposed method to the height of the camera, we projected 

data onto a 2D plane when the virtual camera is placed at different heights and 500cm far 

from the subject. The resolutions of those generated image were kept as 1cm/pix. Figure 

6.5 shows the experimental results.  We can see that the algorithm achieves good 

recognition rates when the height is lower than 200cm and the recognition rate degrades 

when the height increases. This is understandable because when the height of the camera 

increases, the projections of the trajectories tend to converge to lines and the details are 

lost.    
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Figure 6.4 Means and standard deviations of recognition rates for different image resolutions. The 
camera was placed at 500cm far from subject and 200cm high. Only trajectories of hands, knees and 

feet were used. 
 

  
 

Figure 6.5 Means and standard deviations of recognition rates for different heights of the camera. 
Distance between the subject and the camera is set as 500cm. Only trajectories of hands, knees and 

feet were used. 
 

In a real video sequence, it is hard to track the movement of each part of the entire body.  

It is easy to track some of the body parts, such as the hands, feet and knees. Therefore, in 
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order to study the feasibility of the algorithm for video data, we performed experiments 

using only a subset of the projected trajectories, e.g., the trajectories of the hands, feet 

and knees, in experiments shown in figure 6.4 and figure 6.5. We also executed 

experiments using trajectories of more body parts. Figure 6.6 shows the Receiver 

Operating Characteristic (ROC) curves for an experiment using different data. The 

experiment shows the best results are achieved when using all of the data and the results 

degrade when using data only from the hands, elbows, feet, and knees. The results from 

using only trajectories of the hands, feet and knees, and excluding the elbows, degrade a 

little bit compared to the results obtained when using trajectories of the hands, elbows, 

feet and knees.  

 

To examine the sensitivity of the proposed method to errors in trajectories, we performed 

an experiment on the projected data with added Gaussian noise. The standard deviation is 

2cm for the added noises. Their means are 2cm, 4cm, 6cm, 8cm and 10cm. Figure 6.7 

shows the experimental results. We can see the recognition result degraded very fast 

when the mean of the errors was greater than 6 cm. And for greater than 10 cm, the 

features extracted from the corrupted data almost lost discrimination power.  
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Figure 6.6 Experimental results of using different data. The height of the camera is set as 200cm, the 

distance between the subject and the camera is set as 500cm 
 

 
 

Figure 6.7 Means and standard deviations of recognition rates for projected data with different noise. 
Only trajectories of hands, knees and feet are used. 
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6.4.2 Experiments on real video data  

6.4.2.1 Tracking results 

To examine the accuracy of the tracking algorithm, we manually annotated the positions 

of body parts in four test sequences (a total of 432 frames) and computed the image 

distance error of the estimated joint positions. Table 1 shows the average error for each 

body part. The estimates for the knee are relatively better than for the hands and feet. The 

overall average error is 10.6 pixels, which represents approximately 6cm. Figure 6.8 

shows some example frames where the body parts are estimated by using the presented 

algorithm.  

 

Table 6.1 Breakdown of error in pixels after 2D tracking 
 

Joints Ave. 2D Error 

hands 10.3 

knees 9.4 

feet 11.1 

overall 10.6 
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Figure 6.8 Examples of tracking results 
 

6.4.2.2 Results of experiment on real video data  

We applied the algorithm to a video database that contained a total of 72 video clips. A 

linear SVM was used for classification. The cross-validation method was used for 

training and testing. The algorithm achieved an average of 76.4% recognition rate, which 

is worse than the 84.2% recognition rate obtained when using the projected data. Figure 

6.9 shows the ROC curves for the experiments. Section 6.4.2.1 shows that the average 

tracking error of the presented tracking algorithm, on our video data, was 10.6 pixels, 

which represents approximately 6 cm. From the experiment shown in figure 6.8, we 

obtained a recognition rate of 71.7% when adding the Gaussian noise (mean 6cm, 

standard deviation) to projected 2D data. Based on those two results, we think that the 
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degradation in the recognition rate of video data compared to projected 2D data is due to 

the errors in tracking. Also, we believe a better tracking result will lead to more accurate 

pathological gait identification results.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9 Experimental results for using hands, knee, feet data 
 
 
 

6.5 Conclusions 

In this chapter, we presented an algorithm to identify pathological gait from video data. 

At first a symmetry measure of two 3D trajectories based on their 2D profile view 

projections was presented. Then, a feature vector based on symmetry was built to 

represent a person’s gait. Finally, a linear SVM classifier was used to differentiate 

between normal and pathological gaits. We experimented with two databases. The first 

database consists of 2D data projected from 3D motion-captured data. We obtained an 

84.5% recognition rate when using the trajectories of the hands, knees and feet and a 
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virtual camera placed under 200cm height and 500cm far from the object. When 

trajectories of additional body parts were used to build the feature vector, better 

recognition results were obtained. The experiments on the 2D projected data also showed 

that the algorithm is sensitive to resolution of the image. However, in real applications, 

the camera should not be placed too far from the object because of the effect of the 

resolution of the camera. The experimental results on 2D projected data demonstrated 

that the presented algorithm is promising for identifying pathological gait from video.  

 

In the second set of experiments we used a database of real video data. Because it is very 

difficult to track elbows and other body parts by using the tracking algorithm presented, 

we only used the trajectories of hands, knees and feet in the second experiment. The 

experimental results on the real video data achieved 76.4% recognition rate. We believe 

that better results can be obtained if the accuracy of the tracking algorithm is improved. 
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 Chapter 7   

Summary and contributions  
 
      In this thesis, we have provided two methodologies for general human activity 

recognition and pathological gait identification. In the methodology for general human 

activity recognition, we combine motion-based features with shape-based features to 

model human activities. We represent each activity by a set of Hidden Markov Models, 

where each model represents the activity viewed from a specific direction to realize the 

view-invariance. We also presented a voting based method to segment and recognize 

continuous complex human activities. In the methodology for pathological gait 

identification, we used a symmetry measure of trajectories of body parts as a feature to 

represent gait. Then, an SVM classifier was trained and used for classification. In 

particular, we developed two algorithms to identify pathological gaits using 3D motion-

captured data and video data, respectively. We also presented a template-based algorithm 

to track human body parts from a single profile video which is used to identify 

pathological gait. 

 

The major contributions of this research include: 

 

 A shape representation method based on PCA. Even though we use it to represent 

the silhouette of a person in our work, it can be used to describe the shape of any 

object in other applications. 
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 A method that uses both shape and motion information for representing human 

activities. Because both shape feature and motion feature have their own 

advantages and they are complementary to each other, this representation has better 

attributes. Besides, this developed representation is general and can be extracted 

from any view and is suitable for both high resolution and low resolution video. 

 

 A view independent and HMM model based method for activity recognition. 

   

 A voting and HMM based algorithm for segmenting and recognizing complex 

activities. In training stage, the algorithm only needs single activity training 

samples. In recognition stage, this algorithm finishes activity segmentation and 

recognition in one process. 

 

 A gait symmetry measurement and SVM based framework for identifying 

pathological gait.  

 

 An algorithm for identifying pathological gait using 3D motion captured data. A 

DFT based gait symmetry measure using 3D trajectories of the human body parts 

was presented to represent the human gait for pathological gait identification. 

 

 A 2D template based method to tracking body parts from profile view video. 
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 An algorithm for identifying pathological gait using video data. Measuring the 

symmetry of two 3D trajectories based on their 2D projections is not easy. In this 

dissertation, we developed a symmetry measure of two 3D trajectories based on 

their projections in the 2D plane and used it to represent the human gait for 

pathological gait identification.  
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 Appendix I  

In this Appendix we present the details of deriving the 2-D symmetry, Eq. (3), from 

Equations (1) and (2). 
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 Appendix II 

 Computing minimum residual of a linear 
system 
Let )( nmRA nm >∈ × and mRb∈ be given and suppose that an orthogonal matrix 

mmRQ ×∈ has been computed such that 

nm
nR

RAQT

−⎥
⎦

⎤
⎢
⎣

⎡
==     

0
1

   (1) 

is upper triangular. If 

nm
n

d
c

bQT

−⎥
⎦

⎤
⎢
⎣

⎡
=       (2) 

Then 

2

2

2

21

2

2

2

2

                dcxR

bQAQbAx TT

+−=

−=−
 (3) 

for any nRx∈ . Clearly, if rank(A) = rank(R1) = n, then LSx  is defined by the upper 

triangular system cxR LS =1 . Note that the square of the minimum residual 2

2
2 dLS =ρ . 

Thus, the full rank Least Squares (LS) problem can be readily solved once we have 

computed (1), which we refer to as the Q-R factorization. It can be calculated in several 

ways. The algorithm we used is Householder Orthogonalization[93].  
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Algorithm Householder Orthogonalization 

Given )( nmRA nm >∈ × , the following algorithm computer an orthogonal Q such that 

QTA=R is upper triangular.  

 

• Compute the factor R 

    Leave result in place of A, store reflection vectors vk for later use 

For k = 1 to n 

kmkAx ,:=  

xexxvk += 121)(sign  

2
/ kkk vvv =  

)(2 :,::,::,: nkmk
T
kknkmknkmk AvvAA −=  

 

• Compute QTb 

For k = 1 to n 

)(2 ::: mk
T
kkmkmk bvvbb −=  
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 Appendix III 

 Matching using Shape Contexts [97] 

      In our approach, a shape is represented by a discrete set 2
1 },,...,{ RpppP in ∈= , of n 

points sampled from the external contours on the shape. 

  

We first perform Canny edge detection on the image to obtain a set of edge pixels on the 

contours of the body. We then sample some number of points (around 300 in our 

experiments) from these edge pixels to use as the sample points for the body.  

 

For each point pi on a given shape, we want to find the “best” matching point qj on 

another shape. This is a correspondence problem similar to that in stereopsis. Experience 

there suggests that matching is easier if one uses a rich local descriptor. Rich descriptors 

reduce the ambiguity in matching. 

 

Consider the set of vectors originating from a point to all other sample points on a shape. 

These vectors express the configuration of the entire shape relative to the reference point. 

Obviously, this set of n-1 vectors is a rich description, since as n gets large, the 

representation of the shape becomes exact. 
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The full set of vectors as a shape descriptor is much too detailed since shapes and their 

sampled representation may vary from one instance to another in a category. The 

distribution over relative positions is a more robust and compact, yet highly 

discriminative descriptor. For a point pi on the shape, compute a coarse histogram hi of 

the relative coordinates of the remaining n-1 points, 

)}(bin)(:{#)( kpqpqkh iii ∈−≠=  

This histogram is defined to be the shape context of pi. The descriptor should be more 

sensitive to differences in nearby pixels, which suggests the use of a log-polar coordinate 

system. An example is shown in Fig. A.1(c). Note that the scale of the bins for log r is 

chosen adaptively, on a per shape basis. This makes the shape context feature invariant to 

scaling. 

 

We use x2 distances between shape contexts as a matching cost between sample points. 

We would like a correspondence between sample points on the two shapes that enforces 

the uniqueness of matches. The problem of matching of a test body to an exemplar body 

is formulated as an assignment problem (also known as the weighted bipartite matching 

problem). We find an optimal assignment between sample points on the test body and 

those on the exemplar. 

 

To this end a bipartite graph is constructed (Figure A.2). The nodes on one side 

represent sample points on the test body, on the other side the sample points on the 

exemplar. Edge weights between nodes in this bipartite graph represent the costs of 
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matching sample points. Similar sample points will have a low matching cost. Dissimilar 

ones will have a high matching cost. ε -cost outlier nodes are added to the graph to 

account for occluded points and noise - sample points missing from a shape can be 

assigned to be outliers for some small cost. Assignment problem solvers can be used to 

find the optimal matching between the sample points of the two bodies, such as method 

presented in [100]. 

 

We compare the test body to all of the exemplars from our training set. The exemplar 

with the lowest total matching cost is chosen as the matching result. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1 Shape contexts. (a,b) Sampled edge points of two shapes. (c) Diagram of log-polar 
histogram bins used in computing the shape contexts. We use 5 bins for log r and 12 bins forθ . (d-f) 

Example shape contexts for reference samples marked by in (a,b). Each shape context is a 
log-polar histogram of the coordinates of the rest of the point set measured using the reference point 
as the origin. (Dark=large value.) Note the visual similarity of the shape contexts for and , which 

were computed for relatively similar points on the two shapes. By contrast, the shape context for  
is quite different. 
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Figure A.2 The bipartite graph used to match sample points of two bodies. The bipartite graph used 
to match sample points of two bodies. Only the edges from the first node are shown for clarity. Each 

node from B1 is connected to every node from B2. In addition, ε -cost outlier nodes are added to 
either side. These outlier nodes allow us to deal with missing sample points between figures (arising 

from occlusion and noise). 
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